Pregled bibliografske jedinice broj: 198336
Potential theory of geometric stable processes
Potential theory of geometric stable processes // Probability theory and related fields, 135 (2006), 4; 547-575 doi:10.1007/s00440-005-0470-3 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 198336 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Potential theory of geometric stable processes
Autori
Šikić, Hrvoje ; Song, Renming ; Vondraček, Zoran
Izvornik
Probability theory and related fields (0178-8051) 135
(2006), 4;
547-575
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Geometric stable processes ; Green function ; Harnack inequality ; capacity
Sažetak
In this paper we study the potential theory of symmetric geometric stable processes by realizing them as subordinate Brownian motions with geometric stable subordinators. More precisely, we establish the asymptotic behaviors of the Green function and the L\'evy density of symmetric geometric stable processes. The asymptotics of these functions near zero exhibit features that are very different from the ones for stable processes. The Green function behaves near zero as $1/(|x|^d \log^2 |x|)$, while the L\'evy density behaves like $1/|x|^d$. We also study the asymptotic behaviors of the Green function and L\'evy density of subordinate Brownian motions with iterated geometric stable subordinators. As an application, we establish estimates on the capacity of small balls for these processes, as well as mean exit time estimates from small balls and a Harnack inequality for these processes.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Zentrallblatt für Mathematik/Mathematical Abstracts
- Mathematical Reviews