Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 198197

Kalman Filter Theory Based Mobile Robot Pose Tracking Using Occupancy Grid Maps


Ivanjko, Edouard; Vašak, Mario; Petrović, Ivan
Kalman Filter Theory Based Mobile Robot Pose Tracking Using Occupancy Grid Maps // Proceedings of the 2005 International Conference on Control and Automation
Budimpešta, 2005. str. 869-874 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 198197 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Kalman Filter Theory Based Mobile Robot Pose Tracking Using Occupancy Grid Maps

Autori
Ivanjko, Edouard ; Vašak, Mario ; Petrović, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2005 International Conference on Control and Automation / - Budimpešta, 2005, 869-874

Skup
2005 International Conference on Control and Automation

Mjesto i datum
Budimpešta, Mađarska, 27.06.2005. - 29.06.2005

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
mobile robot pose tracking ; odometry ; extended Kalman filter ; unscented Kalman filter ; occupancy grid map

Sažetak
In order to perform useful tasks the mobile robot's current pose must be accurately known. Problem of finding and tracking the mobile robot's pose is called localization, and can be global or local. In this paper we address local localization or mobile robot pose tracking with prerequisites of known starting pose, robot kinematic and world model. Pose tracking is mostly based on odometry, which has the problem of accumulating errors in an unbounded fashion. To overcome this problem sensor fusion is commonly used. This paper describes two methods for calibrated odometry and sonar sensor fusion based on Kalman filter theory and occupancy grid maps as used world model. Namely, we compare the pose tracking or pose estimation performances of both most commonly used nonlinear-model based estimators: extended and unscented Kalman filter. Since occupancy grid maps are used, only sonar range measurement uncertainty has to be considered, unlike feature based maps where an additional uncertainty regarding the feature/range reading assignment must be considered. Thus the numerical complexity is reduced. Experimental results on the Pioneer 2DX mobile robot show similar and improved accuracy for both pose estimation techniques compared to simple odometry.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
0036017
0036018

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivan Petrović (autor)

Avatar Url Mario Vašak (autor)

Avatar Url Edouard Ivanjko (autor)


Citiraj ovu publikaciju:

Ivanjko, Edouard; Vašak, Mario; Petrović, Ivan
Kalman Filter Theory Based Mobile Robot Pose Tracking Using Occupancy Grid Maps // Proceedings of the 2005 International Conference on Control and Automation
Budimpešta, 2005. str. 869-874 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Ivanjko, E., Vašak, M. & Petrović, I. (2005) Kalman Filter Theory Based Mobile Robot Pose Tracking Using Occupancy Grid Maps. U: Proceedings of the 2005 International Conference on Control and Automation.
@article{article, author = {Ivanjko, Edouard and Va\v{s}ak, Mario and Petrovi\'{c}, Ivan}, year = {2005}, pages = {869-874}, keywords = {mobile robot pose tracking, odometry, extended Kalman filter, unscented Kalman filter, occupancy grid map}, title = {Kalman Filter Theory Based Mobile Robot Pose Tracking Using Occupancy Grid Maps}, keyword = {mobile robot pose tracking, odometry, extended Kalman filter, unscented Kalman filter, occupancy grid map}, publisherplace = {Budimpe\v{s}ta, Ma\djarska} }
@article{article, author = {Ivanjko, Edouard and Va\v{s}ak, Mario and Petrovi\'{c}, Ivan}, year = {2005}, pages = {869-874}, keywords = {mobile robot pose tracking, odometry, extended Kalman filter, unscented Kalman filter, occupancy grid map}, title = {Kalman Filter Theory Based Mobile Robot Pose Tracking Using Occupancy Grid Maps}, keyword = {mobile robot pose tracking, odometry, extended Kalman filter, unscented Kalman filter, occupancy grid map}, publisherplace = {Budimpe\v{s}ta, Ma\djarska} }

Časopis indeksira:


  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font