Pregled bibliografske jedinice broj: 198197
Kalman Filter Theory Based Mobile Robot Pose Tracking Using Occupancy Grid Maps
Kalman Filter Theory Based Mobile Robot Pose Tracking Using Occupancy Grid Maps // Proceedings of the 2005 International Conference on Control and Automation
Budimpešta, 2005. str. 869-874 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 198197 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Kalman Filter Theory Based Mobile Robot Pose
Tracking Using Occupancy Grid Maps
Autori
Ivanjko, Edouard ; Vašak, Mario ; Petrović, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2005 International Conference on Control and Automation
/ - Budimpešta, 2005, 869-874
Skup
2005 International Conference on Control and Automation
Mjesto i datum
Budimpešta, Mađarska, 27.06.2005. - 29.06.2005
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
mobile robot pose tracking ; odometry ; extended Kalman filter ; unscented Kalman filter ; occupancy grid map
Sažetak
In order to perform useful tasks the mobile robot's current pose must be accurately known. Problem of finding and tracking the mobile robot's pose is called localization, and can be global or local. In this paper we address local localization or mobile robot pose tracking with prerequisites of known starting pose, robot kinematic and world model. Pose tracking is mostly based on odometry, which has the problem of accumulating errors in an unbounded fashion. To overcome this problem sensor fusion is commonly used. This paper describes two methods for calibrated odometry and sonar sensor fusion based on Kalman filter theory and occupancy grid maps as used world model. Namely, we compare the pose tracking or pose estimation performances of both most commonly used nonlinear-model based estimators: extended and unscented Kalman filter. Since occupancy grid maps are used, only sonar range measurement uncertainty has to be considered, unlike feature based maps where an additional uncertainty regarding the feature/range reading assignment must be considered. Thus the numerical complexity is reduced. Experimental results on the Pioneer 2DX mobile robot show similar and improved accuracy for both pose estimation techniques compared to simple odometry.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus