Pregled bibliografske jedinice broj: 197950
A note on calculation of asymptotic energy for Ginzburg-Landau functional with epsilon-dependent 1-Lipschitz penalizing term in one dimension
A note on calculation of asymptotic energy for Ginzburg-Landau functional with epsilon-dependent 1-Lipschitz penalizing term in one dimension // Glasnik matematički, 41 (2006), 61; 89-99 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 197950 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A note on calculation of asymptotic energy for Ginzburg-Landau functional with epsilon-dependent 1-Lipschitz penalizing term in one dimension
Autori
Raguž, Andrija
Izvornik
Glasnik matematički (0017-095X) 41
(2006), 61;
89-99
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Ginzburg-Landau functional; Gamma convergence
Sažetak
We study asymptotic behavior of the Ginzburg-Landau functional $$ I^{; ; ; ; ; \vep}; ; ; ; ; _{; ; ; ; ; g_{; ; ; ; ; \vep}; ; ; ; ; }; ; ; ; ; (v)=\int_{; ; ; ; ; \Omega}; ; ; ; ; \Big({; ; ; ; ; \vep}; ; ; ; ; ^2 v''^2(s)+W(v'(s))+a(s)(v(s)+g_{; ; ; ; ; \vep}; ; ; ; ; (s))^2\Big)ds \ ; $$ as $\vep\str 0$, where $(g_{; ; ; ; ; \vep}; ; ; ; ; )$ is a given sequence of $1$-Lipschitz functions. In cases where the sequence $(g_{; ; ; ; ; \vep}; ; ; ; ; )$ poses some additional properties we calculate (rescaled) minimal macroscopic energy associated to $I^{; ; ; ; ; \vep}; ; ; ; ; _{; ; ; ; ; g_{; ; ; ; ; \vep}; ; ; ; ; }; ; ; ; ; $ as $\vep\str 0$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0036031
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Andrija Raguž
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus