Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 187739

Adaptive Control Based on Fuzzy Process Model with Estimation of Premise Variables


Cupec, Robert; Perić, Nedjeljko; Petrović, Ivan
Adaptive Control Based on Fuzzy Process Model with Estimation of Premise Variables // CD-ROM Proceedings of the 2002 IEEE International Symposium on Industrial Electronics
L'Aquila, 2002. str. 477-482 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 187739 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Adaptive Control Based on Fuzzy Process Model with Estimation of Premise Variables

Autori
Cupec, Robert ; Perić, Nedjeljko ; Petrović, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
CD-ROM Proceedings of the 2002 IEEE International Symposium on Industrial Electronics / - L'Aquila, 2002, 477-482

Skup
2002 IEEE International Symposium on Industrial Electronics

Mjesto i datum
L'Aquila, Italija, 08.07.2002. - 11.07.2002

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
adaptive control; Takagi-Sugeno fuzzy process model; laboratory liquid level rig

Sažetak
An adaptive control method based on Takagi-Sugeno fuzzy process model is proposed. It is applicable in cases when the variables in the premises of fuzzy rules, which determine the operating regime of the system, are not measurable. The process dynamics in different operating regimes is described by local linear models, which are combined using fuzzy rules. The premise variables of the fuzzy rules are estimated by minimizing a performance index of the local linear models. The proposed strategy uses the prior knowledge of the process in form of local process models identified off-line and stored in the controller's database to simplify the estimation procedure. Thereby, the recursive least-squares identification algorithm used in classic self-tuning control is substituted by much simpler least-squares estimation of a small number of parameters. This makes the proposed method appropriate for implementation on simple platforms, providing, in the same time, the adaptation to changes in operating conditions. The proposed method is experimentally tested on a laboratory liquid level rig. The performance of the proposed control algorithm is compared to the performance of a PI controller.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
0036018
0036017

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Nedjeljko Perić (autor)

Avatar Url Ivan Petrović (autor)

Avatar Url Robert Cupec (autor)


Citiraj ovu publikaciju:

Cupec, Robert; Perić, Nedjeljko; Petrović, Ivan
Adaptive Control Based on Fuzzy Process Model with Estimation of Premise Variables // CD-ROM Proceedings of the 2002 IEEE International Symposium on Industrial Electronics
L'Aquila, 2002. str. 477-482 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Cupec, R., Perić, N. & Petrović, I. (2002) Adaptive Control Based on Fuzzy Process Model with Estimation of Premise Variables. U: CD-ROM Proceedings of the 2002 IEEE International Symposium on Industrial Electronics.
@article{article, author = {Cupec, Robert and Peri\'{c}, Nedjeljko and Petrovi\'{c}, Ivan}, year = {2002}, pages = {477-482}, keywords = {adaptive control, Takagi-Sugeno fuzzy process model, laboratory liquid level rig}, title = {Adaptive Control Based on Fuzzy Process Model with Estimation of Premise Variables}, keyword = {adaptive control, Takagi-Sugeno fuzzy process model, laboratory liquid level rig}, publisherplace = {L'Aquila, Italija} }
@article{article, author = {Cupec, Robert and Peri\'{c}, Nedjeljko and Petrovi\'{c}, Ivan}, year = {2002}, pages = {477-482}, keywords = {adaptive control, Takagi-Sugeno fuzzy process model, laboratory liquid level rig}, title = {Adaptive Control Based on Fuzzy Process Model with Estimation of Premise Variables}, keyword = {adaptive control, Takagi-Sugeno fuzzy process model, laboratory liquid level rig}, publisherplace = {L'Aquila, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font