Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 187566

Nitriding parameters analized by neural network and genetic algorithm


Filetin, Tomislav; Žmak, Irena; Novak, Davor
Nitriding parameters analized by neural network and genetic algorithm // Journal de physique. IV, 120 (2004), 355-362 doi:10.1051/jp4:2004120040 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 187566 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Nitriding parameters analized by neural network and genetic algorithm

Autori
Filetin, Tomislav ; Žmak, Irena ; Novak, Davor

Izvornik
Journal de physique. IV (1155-4339) 120 (2004); 355-362

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
nitriding ; neural network ; genetic algorithm ; prediction

Sažetak
The surface hardness and hardness profile of a nitrided workpiece depend on the chemical composition of the steel, nitriding temperature and time, and on type of the nitriding process (i.e. atmosphere). An issue in this approach was to test how the statistical analysis, artificial neural network, genetic algorithm and genetic programming may be used for determination of nitriding time and surface hardness, in case when the chemical composition of steel, nitriding temperature and required thickness of nitrided layer are known. In the neural network learning procedure datasets of results were used, after nitriding 5 different steel grades. Different combinations of time, temperature, surface hardness and thickness of plasma and gas nitriding layer are compiled from the experiments and industrial experience and also from the literature. The static multi-layer feed-forward neural network is proposed. To accelerate the convergence of the proposed static error-back propagation learning algorithm, the momentum method is applied. The mean error between experimental data of nitriding time and data predicted using a neural network, and also the standard deviation for both the learning and the testing dataset is found to be small and acceptable. The determination of time by genetic algorithm gives greater standard deviation than by using neural network. Determining surface hardness after nitriding by the use of neural network gives less reliable results due to relatively imprecise input data and a narrow learning dataset. Due to nitriding data insufficiency, the network was tested only with the learning dataset.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Projekti:
0120032

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Davor Novak (autor)

Avatar Url Tomislav Filetin (autor)

Avatar Url Irena Žmak (autor)

Citiraj ovu publikaciju:

Filetin, Tomislav; Žmak, Irena; Novak, Davor
Nitriding parameters analized by neural network and genetic algorithm // Journal de physique. IV, 120 (2004), 355-362 doi:10.1051/jp4:2004120040 (međunarodna recenzija, članak, znanstveni)
Filetin, T., Žmak, I. & Novak, D. (2004) Nitriding parameters analized by neural network and genetic algorithm. Journal de physique. IV, 120, 355-362 doi:10.1051/jp4:2004120040.
@article{article, author = {Filetin, Tomislav and \v{Z}mak, Irena and Novak, Davor}, year = {2004}, pages = {355-362}, DOI = {10.1051/jp4:2004120040}, keywords = {nitriding, neural network, genetic algorithm, prediction}, journal = {Journal de physique. IV}, doi = {10.1051/jp4:2004120040}, volume = {120}, issn = {1155-4339}, title = {Nitriding parameters analized by neural network and genetic algorithm}, keyword = {nitriding, neural network, genetic algorithm, prediction} }
@article{article, author = {Filetin, Tomislav and \v{Z}mak, Irena and Novak, Davor}, year = {2004}, pages = {355-362}, DOI = {10.1051/jp4:2004120040}, keywords = {nitriding, neural network, genetic algorithm, prediction}, journal = {Journal de physique. IV}, doi = {10.1051/jp4:2004120040}, volume = {120}, issn = {1155-4339}, title = {Nitriding parameters analized by neural network and genetic algorithm}, keyword = {nitriding, neural network, genetic algorithm, prediction} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font