Pregled bibliografske jedinice broj: 182478
Small business credit scoring: A comparison of logistic regression, neural network and decision tree models
Small business credit scoring: A comparison of logistic regression, neural network and decision tree models // Proceedings of the 26th International Conference on Information Tehnology Interfaces / Lužar-Stiffler, Vesna (ur.).
Zagreb: Sveučilišni računski centar Sveučilišta u Zagrebu (Srce), 2004. str. 265-270 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 182478 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Small business credit scoring: A comparison of logistic regression, neural network and decision tree models
Autori
Zekić-Sušac, Marijana ; Šarlija, Nataša ; Benšić, Mirta
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 26th International Conference on Information Tehnology Interfaces
/ Lužar-Stiffler, Vesna - Zagreb : Sveučilišni računski centar Sveučilišta u Zagrebu (Srce), 2004, 265-270
Skup
International Conference on Information Technology Interfaces (ITI) 2004
Mjesto i datum
Dubrovnik, Hrvatska; Cavtat, Hrvatska, 07.06.2004. - 10.06.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
credit scoring modeling; decision trees; logistic regression; neural network; small business
Sažetak
The paper compares the models for small business credit scoring developed by logistic regression, neural networks, and CART decision trees on a Croatian bank dataset. The models obtained by all three methodologies were estimated ; then validated on the same hold-out sample, and their performance is compared. There is an evident significant difference among the best neural network model, decision tree model, and logistic regression model. The most successful neural network model was obtained by the probabilistic algorithm. The best model extracted the most important features for small business credit scoring from the observed data.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija
POVEZANOST RADA
Ustanove:
Ekonomski fakultet, Osijek