Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 177822

On the representation theory of GL(n) over a p-adic division algebra and unitarity in the Jacquet-Langlands correspondences


Tadić, Marko
On the representation theory of GL(n) over a p-adic division algebra and unitarity in the Jacquet-Langlands correspondences // Pacific Journal of Mathematics, 223 (2006), 167-200 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 177822 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On the representation theory of GL(n) over a p-adic division algebra and unitarity in the Jacquet-Langlands correspondences

Autori
Tadić, Marko

Izvornik
Pacific Journal of Mathematics (0030-8730) 223 (2006); 167-200

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
general linear groups; p-adic fields; division algebras; irreducible unitary representations; Jacquet-Langlands correspondences

Sažetak
Let F be a p-adic field of characteristic 0, and let A be an F- central division algebra of dimension d over F. In the paper, first are developed some parts of the representation theory of GL(m, A), assuming that holds the conjecture which claims that unitary parabolic induction is irreducible for GL(m, A)'s. Among others, the formula for characters of irreducible unitary representations of GL(m, A) is obtained in terms of standard characters. The Jacquet-Langlands correspondence on the level of Grothendieck groups of GL(pd, F) and GL(p, A) is then studied. Using the above character formula, an explicit formulas for the Jacquet-Langlands correspondence of irreducible unitary representations of GL(n, F) are obtained (assuming the conjecture to hold). As a consequence, it is shown that Jacquet-Langlands correspondence sends irreducible unitary representations of GL(n, F) either to zero, or to the irreducible unitary representations, up to a sign (assuming the conjecture).

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0037108

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Marko Tadić (autor)


Citiraj ovu publikaciju:

Tadić, Marko
On the representation theory of GL(n) over a p-adic division algebra and unitarity in the Jacquet-Langlands correspondences // Pacific Journal of Mathematics, 223 (2006), 167-200 (međunarodna recenzija, članak, znanstveni)
Tadić, M. (2006) On the representation theory of GL(n) over a p-adic division algebra and unitarity in the Jacquet-Langlands correspondences. Pacific Journal of Mathematics, 223, 167-200.
@article{article, author = {Tadi\'{c}, Marko}, year = {2006}, pages = {167-200}, keywords = {general linear groups, p-adic fields, division algebras, irreducible unitary representations, Jacquet-Langlands correspondences}, journal = {Pacific Journal of Mathematics}, volume = {223}, issn = {0030-8730}, title = {On the representation theory of GL(n) over a p-adic division algebra and unitarity in the Jacquet-Langlands correspondences}, keyword = {general linear groups, p-adic fields, division algebras, irreducible unitary representations, Jacquet-Langlands correspondences} }
@article{article, author = {Tadi\'{c}, Marko}, year = {2006}, pages = {167-200}, keywords = {general linear groups, p-adic fields, division algebras, irreducible unitary representations, Jacquet-Langlands correspondences}, journal = {Pacific Journal of Mathematics}, volume = {223}, issn = {0030-8730}, title = {On the representation theory of GL(n) over a p-adic division algebra and unitarity in the Jacquet-Langlands correspondences}, keyword = {general linear groups, p-adic fields, division algebras, irreducible unitary representations, Jacquet-Langlands correspondences} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews
  • Zentralblatt fur Mathematik





Contrast
Increase Font
Decrease Font
Dyslexic Font