Pregled bibliografske jedinice broj: 176092
Scheduling - the weakness link can be improved through applying of genetic algorithm
Scheduling - the weakness link can be improved through applying of genetic algorithm // 3rd International Conference on Advanced Technologies for Developing Countries, Proceedings / Katalinić, Branko ; Veža, Ivica ; Bilić, Boženko (ur.).
Split: DAAAM International Vienna ; Strojarski fakultet Sveučilišta u Slavonskom Brodu, 2004. str. 393-399 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 176092 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Scheduling - the weakness link can be improved through applying of genetic algorithm
Autori
Lujić, Roberto ; Šarić, Tomislav ; Šimunović, Goran ; Matičević, Gordana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
3rd International Conference on Advanced Technologies for Developing Countries, Proceedings
/ Katalinić, Branko ; Veža, Ivica ; Bilić, Boženko - Split : DAAAM International Vienna ; Strojarski fakultet Sveučilišta u Slavonskom Brodu, 2004, 393-399
Skup
3rd International Conference on Advanced Technologies for Developing Countries
Mjesto i datum
Split, Hrvatska, 23.06.2004. - 26.06.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
scheduling; genetic algorithm; Enterprise Resource Planning (ERP)
Sažetak
Today are well known basic enterprise tasks, those are: how to satisfy customer demands, how to fulfil due dates, low prices and undoubted quality. The most of Croatian enterprises are not able to fulfil obligations according to customer demands in a way of due dates and that is fact that is based on engineers experiences. So, it can be concluded that the weakness link in Croatian ERP system is inappropriate scheduling model. Usually, scheduling model has not possibility to make plan variants (according to cost, time or both). The article has intention to show how applying of 3-tournament steady-state selection genetic algorithm can improve scheduling process through comparison of different plan variants according to set parameters.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo