Pregled bibliografske jedinice broj: 175371
Calculus proofs of some combinatorial inequalities
Calculus proofs of some combinatorial inequalities // Mathematical inequalities & applications, 6 (2003), 2; 197-209 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 175371 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Calculus proofs of some combinatorial inequalities
Autori
Došlić, Tomislav ; Veljan, Darko
Izvornik
Mathematical inequalities & applications (1331-4343) 6
(2003), 2;
197-209
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Motzkin numbers; convexity; secondary structures
Sažetak
Using calculus we show how to prove some combinatorial inequalities of the type log-concavity or log-convexity. It is shown by this method that binomial coefficients and Stirling numbers of the first and second kinds are log-concave, and that Motzkin numbers and secondary structure numbers of rank $1$ are log-convex. In fact, we prove via calculus a much stronger result that a natural continuous "patchwork" (i.e. corresponding dynamical systems) of Motzkin numbers and secondary structures recursions are increasing functions. We indicate how to prove asymptotically the log-convexity for general secondary structures. Our method also applies to show that sequences of values of some orthogonal polynomials, and in particular the sequence of central Delannoy numbers, are log-convex.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037117
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews