Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 171175

Noncommutative localization in noncommutative geometry


Škoda, Zoran
Noncommutative localization in noncommutative geometry // Noncommutative Localization in Algebra and Topology / Ranicki, Andrew (ur.).
London : Delhi: Cambridge University Press, 2005. str. 220-313


CROSBI ID: 171175 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Noncommutative localization in noncommutative geometry

Autori
Škoda, Zoran

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, pregledni

Knjiga
Noncommutative Localization in Algebra and Topology

Urednik/ci
Ranicki, Andrew

Izdavač
Cambridge University Press

Grad
London : Delhi

Godina
2005

Raspon stranica
220-313

ISBN
052168160X

Ključne riječi
Noncommutative localization, noncommutative geometry

Sažetak
The aim of these notes is to collect and motivate the basic localization toolbox for the geometric study of ``spaces'' locally described by noncommutative rings and their categories of one-sided modules. We present the basics of Ore localization of rings and modules in great detail. Common practical techniques are studied as well. We also describe a counterexample to a folklore test principle for Ore sets. Localization in negatively filtered rings arising in deformation theory is presented. A new notion of the differential Ore condition is introduced in the study of localization of differential calculi. To aid the geometrical viewpoint, localization is studied with emphasis on descent formalism, flatness, abelian categories of quasicoherent sheaves and generalizations, and natural pairs of adjoint functors for sheaf and module categories. The key motivational theorems from the seminal works of Gabriel on localization, abelian categories and schemes are quoted without proof, as well as the related statements of Popescu, Eilenberg-Watts, Deligne and Rosenberg. Cohn universal localization does not have good flatness properties, but it is determined by the localization map already at the ring level, like the perfect localizations are. Cohn localization is here related to the quasideterminants of Gelfand and Retakh ; and this may help the understanding of both subjects.

Izvorni jezik
Engleski

Znanstvena područja
Matematika

Napomena
The web link is unofficial (temporary). The official version is only printed (Cambridge Univ. Press). ISBN-10: 052168160X, ISBN-13: 9780521681605



POVEZANOST RADA


Projekti:
0098003

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Zoran Škoda (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Škoda, Zoran
Noncommutative localization in noncommutative geometry // Noncommutative Localization in Algebra and Topology / Ranicki, Andrew (ur.).
London : Delhi: Cambridge University Press, 2005. str. 220-313
Škoda, Z. (2005) Noncommutative localization in noncommutative geometry. U: Ranicki, A. (ur.) Noncommutative Localization in Algebra and Topology. London : Delhi, Cambridge University Press, str. 220-313.
@inbook{inbook, author = {\v{S}koda, Zoran}, editor = {Ranicki, A.}, year = {2005}, pages = {220-313}, keywords = {Noncommutative localization, noncommutative geometry}, isbn = {052168160X}, title = {Noncommutative localization in noncommutative geometry}, keyword = {Noncommutative localization, noncommutative geometry}, publisher = {Cambridge University Press}, publisherplace = {London : Delhi} }
@inbook{inbook, author = {\v{S}koda, Zoran}, editor = {Ranicki, A.}, year = {2005}, pages = {220-313}, keywords = {Noncommutative localization, noncommutative geometry}, isbn = {052168160X}, title = {Noncommutative localization in noncommutative geometry}, keyword = {Noncommutative localization, noncommutative geometry}, publisher = {Cambridge University Press}, publisherplace = {London : Delhi} }




Contrast
Increase Font
Decrease Font
Dyslexic Font