Pregled bibliografske jedinice broj: 16913
Artificial Neural Networks in UV-VIS Spectral Analysis of Ribonucleotides
Artificial Neural Networks in UV-VIS Spectral Analysis of Ribonucleotides // Preprints of the 7th International Conference on Computer Applications in Biotechnology, Osaka, Japan / T. Yoshida and S. Shioya (ur.).
Osaka: IFAC Publications Elsevier Science Ltd, 1998. str. 269-273 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 16913 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Artificial Neural Networks in UV-VIS Spectral Analysis of Ribonucleotides
Autori
Beluhan, Damir ; Beluhan, Sunčica
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Preprints of the 7th International Conference on Computer Applications in Biotechnology, Osaka, Japan
/ T. Yoshida and S. Shioya - Osaka : IFAC Publications Elsevier Science Ltd, 1998, 269-273
Skup
7th International Conference on Computer Applications in Biotehnology-CAB7- Horizon of Bioprocess Systems Engineering in 21st Century
Mjesto i datum
Osaka, Japan, 31.05.1998. - 04.06.1998
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
neural networks; spectroscopy; RNA; classification
Sažetak
The ability of ANNs to learn process inherent features and to detect characteristic patterns with a little apriori knowledge, makes ANNs powerful and flexible tools in the various chemometrics studies. The precise quantitative discrimination of quite similar ribonucleotide spectrophotometric data in UV range (210-300 nm) is necessary in a wide range of applications (e. g., the flavor enhancers production). Several types of ANNs, such as multilayer perceptrons, generalized feedforward networks and modular feedforward networks, with different topologies, were applied for the quantitative identification of the concentration of 5'-CMP, 5'-GMP, 5'-UMP, 5'-AMP, 2'- and 3'-GMP, 2'- and 3'-UMP. The achieved results in resolving spectral overlapping of pure components is the first, essential step for the extension of this artificial intelligence methodology to the complex mixtures resolution. This instrumental approach will avoid time-consuming cleanup procedures or separation steps. As because the strength of ANNs lies in their ability to generalize complex hidden relationship, careful cross validation supervision was performed.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Prehrambena tehnologija
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Prehrambeno-biotehnološki fakultet, Zagreb