Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 168164

An Application of U(g)-bimodules to Representation Theory of Affine Lie Algebras


Adamović, Dražen
An Application of U(g)-bimodules to Representation Theory of Affine Lie Algebras // Algebras and representation theory, 7 (2004), 4; 457-469 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 168164 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An Application of U(g)-bimodules to Representation Theory of Affine Lie Algebras

Autori
Adamović, Dražen

Izvornik
Algebras and representation theory (1386-923X) 7 (2004), 4; 457-469

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
affine Lie algebras; vertex operator algebras; U(g)-bimodules; Frenkel-Zhu bimodule; fusion rules; irreducible representations; loop modules; tensor products

Sažetak
Let $\hat{; ; g}; ; $ be the affine Lie algebra associated to the simple finite-dimensional Lie algebra $g$. We consider the tensor product of the loop $\hat{; ; g}; ; $-module $\overline{; ; V(\mu)}; ; $ associated to the irreducible finite-dimensional $g$--module $V(\mu)$ and the irreducible highest weight $\hat{; ; g}; ; $--module $L_{; ; k, \l}; ; $. Then $L_{; ; k, \l}; ; $ can be viewed as an irreducible module for the vertex operator algebra $M_{; ; k, 0}; ; $. Let $A(L_{; ; k, \l}; ; )$ be the corresponding $A(M_{; ; k, 0}; ; ) (=U(g))$-bimodule. We prove that if the $U(g)$-module $A(L_{; ; k, \l}; ; ) \otimes_{; ; U(g)}; ; V(\mu)$ is zero, then the $\hat{; ; g}; ; $-module $L_{; ; k, \l}; ; \otimes \overline{; ; V(\mu)}; ; $ is irreducible. As an example, we apply this result on integrable representations for affine Lie algebras.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0037125

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Citiraj ovu publikaciju:

Adamović, Dražen
An Application of U(g)-bimodules to Representation Theory of Affine Lie Algebras // Algebras and representation theory, 7 (2004), 4; 457-469 (međunarodna recenzija, članak, znanstveni)
Adamović, D. (2004) An Application of U(g)-bimodules to Representation Theory of Affine Lie Algebras. Algebras and representation theory, 7 (4), 457-469.
@article{article, author = {Adamovi\'{c}, Dra\v{z}en}, year = {2004}, pages = {457-469}, keywords = {affine Lie algebras, vertex operator algebras, U(g)-bimodules, Frenkel-Zhu bimodule, fusion rules, irreducible representations, loop modules, tensor products}, journal = {Algebras and representation theory}, volume = {7}, number = {4}, issn = {1386-923X}, title = {An Application of U(g)-bimodules to Representation Theory of Affine Lie Algebras}, keyword = {affine Lie algebras, vertex operator algebras, U(g)-bimodules, Frenkel-Zhu bimodule, fusion rules, irreducible representations, loop modules, tensor products} }
@article{article, author = {Adamovi\'{c}, Dra\v{z}en}, year = {2004}, pages = {457-469}, keywords = {affine Lie algebras, vertex operator algebras, U(g)-bimodules, Frenkel-Zhu bimodule, fusion rules, irreducible representations, loop modules, tensor products}, journal = {Algebras and representation theory}, volume = {7}, number = {4}, issn = {1386-923X}, title = {An Application of U(g)-bimodules to Representation Theory of Affine Lie Algebras}, keyword = {affine Lie algebras, vertex operator algebras, U(g)-bimodules, Frenkel-Zhu bimodule, fusion rules, irreducible representations, loop modules, tensor products} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews
  • Zentrablatt fur Mathematik





Contrast
Increase Font
Decrease Font
Dyslexic Font