Pregled bibliografske jedinice broj: 168164
An Application of U(g)-bimodules to Representation Theory of Affine Lie Algebras
An Application of U(g)-bimodules to Representation Theory of Affine Lie Algebras // Algebras and representation theory, 7 (2004), 4; 457-469 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 168164 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
An Application of U(g)-bimodules to Representation Theory of Affine Lie Algebras
Autori
Adamović, Dražen
Izvornik
Algebras and representation theory (1386-923X) 7
(2004), 4;
457-469
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
affine Lie algebras; vertex operator algebras; U(g)-bimodules; Frenkel-Zhu bimodule; fusion rules; irreducible representations; loop modules; tensor products
Sažetak
Let $\hat{; ; g}; ; $ be the affine Lie algebra associated to the simple finite-dimensional Lie algebra $g$. We consider the tensor product of the loop $\hat{; ; g}; ; $-module $\overline{; ; V(\mu)}; ; $ associated to the irreducible finite-dimensional $g$--module $V(\mu)$ and the irreducible highest weight $\hat{; ; g}; ; $--module $L_{; ; k, \l}; ; $. Then $L_{; ; k, \l}; ; $ can be viewed as an irreducible module for the vertex operator algebra $M_{; ; k, 0}; ; $. Let $A(L_{; ; k, \l}; ; )$ be the corresponding $A(M_{; ; k, 0}; ; ) (=U(g))$-bimodule. We prove that if the $U(g)$-module $A(L_{; ; k, \l}; ; ) \otimes_{; ; U(g)}; ; V(\mu)$ is zero, then the $\hat{; ; g}; ; $-module $L_{; ; k, \l}; ; \otimes \overline{; ; V(\mu)}; ; $ is irreducible. As an example, we apply this result on integrable representations for affine Lie algebras.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037125
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Zentrablatt fur Mathematik