Pregled bibliografske jedinice broj: 167879
Finite-Sheeted Covering Maps over Compact Connected Groups
Finite-Sheeted Covering Maps over Compact Connected Groups // Third Croatian Congress of Mathematics, Abstracts
Split, 2004. str. 41-41. (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 167879 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Finite-Sheeted Covering Maps over Compact Connected Groups
Autori
Eda, Katsuya ; Matijević, Vlasta
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Third Croatian Congress of Mathematics, Abstracts
/ - Split, 2004, 41-41.
Skup
Third Croatian Congress of Mathematics
Mjesto i datum
Split, Hrvatska, 16.06.2004. - 18.06.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
Kompaktna grupa; kompaktna abelova grupa; konačno-slojno natkrivanje; natkrivajući homomorfizam.
(Compact group; compact abelian group; finite-sheeted covering; covering homomorphism.)
Sažetak
Recently, the classification theorem of finite-sheeted covering maps over paracompact spaces has been proved. It establishes a bijection between the set of all pointed equivalence classes of s-sheeted pointed covering maps f:(X, *)→ (Y, *) over connected paracompact space (Y, *) and the set of all subprogroups of index s of the fundamental progroup of (Y, *). Using this result we classify finite-sheeted covering maps over 2-dimensional connected, compact abelian group, i.e. inverse limit of 2-dimensional tori. Furthermore, in some special cases we examine whether a total space is homeomorphic to the base space . The proof of our classification theorem is reduced only to the case of finite-sheeted covering homomorphisms since each finite-sheeted covering map f:X→ Y over a connected, compact group Y admits a (unique) multiplication on X such that X is a topological group and f homomorphism.
Izvorni jezik
Engleski
Znanstvena područja
Matematika