Pregled bibliografske jedinice broj: 167790
Torus-like continua which are not self-covering spaces
Torus-like continua which are not self-covering spaces // International Conference on Topology and its Applications, Abstracts
Skopje, 2004. str. 23-23. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 167790 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Torus-like continua which are not self-covering spaces
Autori
Katsuya, Eda ; Mandić, Joško ; Matijević, Vlasta
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
International Conference on Topology and its Applications, Abstracts
/ - Skopje, 2004, 23-23.
Skup
International Conference on Topology and its Applications
Mjesto i datum
Skopje, Sjeverna Makedonija, 01.09.2004. - 04.09.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Inverzni sustav; direktni sustav; h-povezani prostor; natkrivanje; kontinuum poput torusa; p-adski broj; kvadratni broj.
(Inverse system; direct system; h-connected space; covering mapping; torus-like continuum; p-adic number; quadratic number)
Sažetak
For each non-quadratic p-adic integer, p>2, we give an example of a torus-like continuum Y (i.e. inverse limit of an inverse sequence, where each term is the 2-torus T² ; and each bonding map is a surjective homomorphism), which admits three non-equivalent 4-sheeted coverings f₁ :X₁ → Y, f₂ :X₂ → Y, f₃ :X₃ → Y such that the total spaces X₁ =Y, X₂ and X₃ are pair-wise non-homeomorphic. Furthermore, Y admits a p-sheeted covering f₄ :X₄ → Y, although each bonding map of Y is a p-sheeted covering of T² ; . In particular, Y is not a self-covering space. This example shows that the class of self-covering spaces is not closed under the operation of forming inverse limits with open surjective bonding maps.
Izvorni jezik
Engleski
Znanstvena područja
Matematika