Pregled bibliografske jedinice broj: 164928
The Improving of Neural Network Capabilities in On-Line Identification and Tracking Control of Ship
The Improving of Neural Network Capabilities in On-Line Identification and Tracking Control of Ship // Proceedings of the 10th IEEE International Conference on Methods and Models in Automation and Robotics : MMAR 2004 ; Vol. 1
Szczecin: Wydawnictwo Uczelniane Politechniki Szczecinskiej, 2004. str. 195-200 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 164928 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Improving of Neural Network Capabilities in On-Line Identification and Tracking Control of Ship
Autori
Velagić, Jasmin ; Vukić, Zoran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 10th IEEE International Conference on Methods and Models in Automation and Robotics : MMAR 2004 ; Vol. 1
/ - Szczecin : Wydawnictwo Uczelniane Politechniki Szczecinskiej, 2004, 195-200
ISBN
83-88764-09-8
Skup
10th IEEE International Conference on Methods and Models in Automation and Robotics(MMAR) - Special Invited Session "Advanced Ship Control Systems"
Mjesto i datum
Międzyzdroje, Poljska, 30.08.2004. - 02.09.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Neural networks; adaptive learning rate; identification; tracking control
Sažetak
The paper proposes a computationally efficient artificial neural network model for on-line system identification of nonlinear systems under the fuzzy closed-loop control system. The proposed backprogagation (BP) algorithm with adaptive learning rate (BPLAR) was tested for both off-line and on-line identification, comparing with traditional backpropagation learning algorithm on nonlinear ship model. The disadvantages of conventional BP algorithm are slower convergence and longer training times. The learning rate is adjusted at each iteration for the on-line weight and bias adaptation to reduce the training time. Simulation results indicate a superior convergence speed and better control performance in the case of adaptive BP method
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Projekti:
0036010
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Zoran Vukić
(autor)