Pregled bibliografske jedinice broj: 162710
CIN85 Associates with Multiple Efforts Controlling Intracellular Trafficking of Epidermal Growth Factor Receptors
CIN85 Associates with Multiple Efforts Controlling Intracellular Trafficking of Epidermal Growth Factor Receptors // Molecular biology of the cell, 15 (2004), 3155-3166 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 162710 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
CIN85 Associates with Multiple Efforts Controlling Intracellular Trafficking of Epidermal Growth Factor Receptors
(CIN85 associates with multiple efforts controlling intracellular trafficking of epidermal growth factor receptors)
Autori
Kowanetz, Katarzyna ; Husnjak, Koraljka ; Holler, Daniela ; Kowanetz, Marcin ; Soubeyran, Philippe ; Hirsch, Dianne ; Schmidt, H.H. Mirko ; Pavelić, Krešimir ; De Camilli, Pietro ; Randazzo, A. Paul ; Dikic, Ivan
Izvornik
Molecular biology of the cell (1059-1524) 15
(2004);
3155-3166
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
CIN85; Cbl; EGFR; receptor downregulation
Sažetak
CIN85 is a multidomain adaptor protein involved in Cbl-mediated down-regulation of epidermal growth factor (EGF) receptors. CIN85 src homology 3 domains specifically bind to a proline-arginine (PxxxPR) motif in Cbl, and this association seems to be important for EGF receptor endocytosis. Here, we report identification of novel CIN85 effectors, all containing one or more PxxxPR motifs, that are indispensable for their mutual interactions. These effectors include phosphatidyl-inositol phosphatases SHIP-1 and synaptojanin 2B1, Arf GTPase-activating proteins ASAP1 and ARAP3, adaptor proteins Hip1R and STAP1, and a Rho exchange factor, p115Rho GEF. Acting as a molecular scaffold, CIN85 clusters its effectors and recruits them to high-molecular-weight complexes in cytosolic extracts of cells. Further characterization of CIN85 binding to ASAP1 revealed that formation of the complex is independent on cell stimulation. Overexpression of ASAP1 increased EGF receptor recycling, whereas ASAP1 containing mutated PxxxPR motif failed to promote this event. We propose that CIN85 functions as a scaffold molecule that binds to numerous endocytic accessory proteins, thus controlling distinct steps in trafficking of EGF receptors along the endocytic and recycling pathways.
Izvorni jezik
Engleski
Znanstvena područja
Temeljne medicinske znanosti
POVEZANOST RADA
Ustanove:
Institut "Ruđer Bošković", Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE