Pregled bibliografske jedinice broj: 160688
Finite 2-groups with exactly four cyclic subgroups of order 2^n
Finite 2-groups with exactly four cyclic subgroups of order 2^n // Journal für die Reine und Angewandte Mathematik, I (2004), 566; 135-181 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 160688 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Finite 2-groups with exactly four cyclic subgroups of order 2^n
Autori
Janko, Zvonimir
Izvornik
Journal für die Reine und Angewandte Mathematik (0075-4102) I
(2004), 566;
135-181
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
finite 2-group; cyclic group; dihedral group; quaternion group; metacyclic group
Sažetak
In this paper finite 2-groups G with exactly four cyclic subgroups of order 2^n(n>=2) (n fixed) are classified. It turns out that these four cyclic subgroups of order 2^n generate always a subgroup of order 2^n+2. In the second part of the paper a kind of converse of this result is proved. If G is a finite 2-group all of whose elements of order 2^n generate a subgroup of order 2^n+2, then the structure of g is completly determined. At the end of the paper we completely classify so called Uˇ2-groups and give a new non-computational proof of the famous Blackburn's theorem in which minimal non-metacyclic 2-groups are completely classified.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus