Pregled bibliografske jedinice broj: 159840
Analytic Fuzzy Logic Control of a Rotary crabe Using Evolutionary Seardc for Optimal Fuzzy Parameters
Analytic Fuzzy Logic Control of a Rotary crabe Using Evolutionary Seardc for Optimal Fuzzy Parameters // Proceedings of the 15th DAAAM International Symposium Intelligent Manufacturing & Automation : Globalisation - Technology - Men - Nature / Katalinić, Branko (ur.).
Beč: DAAAM International Vienna, 2004. str. 445-446 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 159840 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analytic Fuzzy Logic Control of a Rotary crabe Using Evolutionary Seardc for Optimal Fuzzy Parameters
Autori
Sučević, Mladen ; Novaković, Branko ; Crneković, Mladen
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 15th DAAAM International Symposium Intelligent Manufacturing & Automation : Globalisation - Technology - Men - Nature
/ Katalinić, Branko - Beč : DAAAM International Vienna, 2004, 445-446
Skup
DAAAM International Symposium (15 ; 2004)
Mjesto i datum
Beč, Austrija, 02.11.2004. - 06.11.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
fuzzy control; rotary crane; evolutionary algorithms; fuzzy parameter optimization
Sažetak
This paper implements fuzzy logic control of a rotary crane which makes three kinds of motion (rotation, load hoisting, boom hoisting) simultaneously. The goal is to transfer a load in a given time to a desired place minimizing the swing of the load at the end of a transfer. For each controllable degree of freedom of motion, fuzzy logic controller is constructed utilizing analytic approach to fuzzy logic control synthesis. This avoids a problem of exponential growth in fuzzy rules as the number of variables increases. For that purpose, instead of defining a fuzzy rule base, analytic function is used that determines the positions of the centres of the output fuzzy sets. Input variables in each analytical fuzzy logic controller are position and velocity errors of coresponding controllable and each directly uncontrollable (swing of a load) degree of freedom. Some of the free fuzzy sets parameters were obtained using evolutionary algorithms optimization method
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb