Pregled bibliografske jedinice broj: 159207
Mixed means over balls and annuli and lower bounds for operator norms of maximal functions
Mixed means over balls and annuli and lower bounds for operator norms of maximal functions // Function Spaces, Differential Operators and Nonlinear Analysis FSDONA 2004
Plzeň: Zapadnočeska Univerzita v Plzni, 2004. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 159207 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Mixed means over balls and annuli and lower bounds for operator norms of maximal functions
Autori
Čižmešija, Aleksandra
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Function Spaces, Differential Operators and Nonlinear Analysis FSDONA 2004
/ - Plzeň : Zapadnočeska Univerzita v Plzni, 2004
Skup
Function Spaces, Differential Operators and Nonlinear Analysis FSDONA 2004
Mjesto i datum
Svratka, Češka Republika, 27.05.2004. - 02.06.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
mixed means; integral means; balls and annuli; potential weights; Hardy's inequality; Hardy-Littlewood maximal function; spherical maximal function
Sažetak
We prove mixed-means inequalities for integral means of arbitrary real order, where one of the means is taken over the ball in R^n centered at x and of radius delta*x, delta>0. From this result we deduce the operator norm of the operator S_delta which averages a function |f| from L^p(R^n) over the same balls, introduced by M. Christ and L. Grafakos (Hardy type inequality). We also obtain the operator norm of the related geometric mean operator (Carleman type inequality). Moreover, we indicate analogous results for annuli and discuss estimations related to Hardy-Littlewood and spherical maximal functions.
Izvorni jezik
Engleski
Znanstvena područja
Matematika