Pregled bibliografske jedinice broj: 157634
Tool Wear Monitoring Using Radial Basis Function Neural Network
Tool Wear Monitoring Using Radial Basis Function Neural Network // Proceedings of International Joint Conference on Neural Networks - IJCNN 2004 / Szolgay, Péter (ur.).
Budimpešta: Institute of Electrical and Electronics Engineers (IEEE), 2004. str. 1859-1863 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 157634 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Tool Wear Monitoring Using Radial Basis Function Neural Network
Autori
Brezak, Danko ; Udiljak, Toma ; Mihoci, Kristijan ; Majetić, Dubravko ; Novaković, Branko ; Kasać, Josip
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of International Joint Conference on Neural Networks - IJCNN 2004
/ Szolgay, Péter - Budimpešta : Institute of Electrical and Electronics Engineers (IEEE), 2004, 1859-1863
Skup
IJCNN 2004 - International Joint Conference on Neural Networks
Mjesto i datum
Budimpešta, Mađarska, 25.07.2004. - 29.07.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Tool wear monitoring; Radial Basis Function Neural Network; Milling
Sažetak
This paper considers the application of Radial Basis Function neural network (RBFNN) for tool wear determination in the milling process. Tool wear, i.e. flank wear zone widths, have been estimated in two phases using two types of RBFNN algorithms. In the first phase, RBFNN pattern recognition algorithm is used in order to classify tool wear features in three wear level classes (initial, normal and rapid tool wear). On behalf of these results, in the second phase, RBFNN regression algorithm is utilized to estimate the average amount of flank wear zone widths. Tool wear features were extracted in time and frequency domain from three different types of signals: force, acoustic emission and nominal currents of feed drives.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb
Profili:
Kristijan Mihoci
(autor)
Dubravko Majetić
(autor)
Branko Novaković
(autor)
Danko Brezak
(autor)
Toma Udiljak
(autor)
Josip Kasać
(autor)