Pregled bibliografske jedinice broj: 155430
Induction of comprehensible models for gene expression datasets by subgroup discovery methodology
Induction of comprehensible models for gene expression datasets by subgroup discovery methodology // Journal of biomedical informatics, 37 (2004), 4; 269-284 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 155430 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Induction of comprehensible models for gene expression datasets by subgroup discovery methodology
Autori
Gamberger, Dragan ; Lavrac, Nada ; Zelezny, Filip ; Tolar, Jakub
Izvornik
Journal of biomedical informatics (1532-0464) 37
(2004), 4;
269-284
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Gene expression measurements; Disease markers; Subgroup discovery; Machine learning; Comprehensible classification
Sažetak
Finding disease markers (classifiers) from gene expression data by machine learning algorithms is characterized by a high risk of overfitting the data due the abundance of attributes (simultaneously measured gene expression values) and shortage of available examples (observations). To avoid this pitfall and achieve predictor robustness, state-of-the-art approaches construct complex classifiers that combine relatively weak contributions of up to thousands of genes (attributes) to classify a disease. The complexity of such classifiers limits their transparency and consequently the biological insights they can provide. The goal of this study is to apply to this domain the methodology of constructing simple yet robust logic-based classifiers amenable to direct expert interpretation. On two well-known, publicly available gene expression classification problems, the paper shows the feasibility of this approach, employing a recently developed subgroup discovery methodology. Some of the discovered classifiers allow for novel biological interpretations.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE