Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 155430

Induction of comprehensible models for gene expression datasets by subgroup discovery methodology


Gamberger, Dragan; Lavrac, Nada; Zelezny, Filip; Tolar, Jakub
Induction of comprehensible models for gene expression datasets by subgroup discovery methodology // Journal of biomedical informatics, 37 (2004), 4; 269-284 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 155430 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Induction of comprehensible models for gene expression datasets by subgroup discovery methodology

Autori
Gamberger, Dragan ; Lavrac, Nada ; Zelezny, Filip ; Tolar, Jakub

Izvornik
Journal of biomedical informatics (1532-0464) 37 (2004), 4; 269-284

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Gene expression measurements; Disease markers; Subgroup discovery; Machine learning; Comprehensible classification

Sažetak
Finding disease markers (classifiers) from gene expression data by machine learning algorithms is characterized by a high risk of overfitting the data due the abundance of attributes (simultaneously measured gene expression values) and shortage of available examples (observations). To avoid this pitfall and achieve predictor robustness, state-of-the-art approaches construct complex classifiers that combine relatively weak contributions of up to thousands of genes (attributes) to classify a disease. The complexity of such classifiers limits their transparency and consequently the biological insights they can provide. The goal of this study is to apply to this domain the methodology of constructing simple yet robust logic-based classifiers amenable to direct expert interpretation. On two well-known, publicly available gene expression classification problems, the paper shows the feasibility of this approach, employing a recently developed subgroup discovery methodology. Some of the discovered classifiers allow for novel biological interpretations.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
0098023

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Dragan Gamberger (autor)


Citiraj ovu publikaciju:

Gamberger, Dragan; Lavrac, Nada; Zelezny, Filip; Tolar, Jakub
Induction of comprehensible models for gene expression datasets by subgroup discovery methodology // Journal of biomedical informatics, 37 (2004), 4; 269-284 (međunarodna recenzija, članak, znanstveni)
Gamberger, D., Lavrac, N., Zelezny, F. & Tolar, J. (2004) Induction of comprehensible models for gene expression datasets by subgroup discovery methodology. Journal of biomedical informatics, 37 (4), 269-284.
@article{article, author = {Gamberger, Dragan and Lavrac, Nada and Zelezny, Filip and Tolar, Jakub}, year = {2004}, pages = {269-284}, keywords = {Gene expression measurements, Disease markers, Subgroup discovery, Machine learning, Comprehensible classification}, journal = {Journal of biomedical informatics}, volume = {37}, number = {4}, issn = {1532-0464}, title = {Induction of comprehensible models for gene expression datasets by subgroup discovery methodology}, keyword = {Gene expression measurements, Disease markers, Subgroup discovery, Machine learning, Comprehensible classification} }
@article{article, author = {Gamberger, Dragan and Lavrac, Nada and Zelezny, Filip and Tolar, Jakub}, year = {2004}, pages = {269-284}, keywords = {Gene expression measurements, Disease markers, Subgroup discovery, Machine learning, Comprehensible classification}, journal = {Journal of biomedical informatics}, volume = {37}, number = {4}, issn = {1532-0464}, title = {Induction of comprehensible models for gene expression datasets by subgroup discovery methodology}, keyword = {Gene expression measurements, Disease markers, Subgroup discovery, Machine learning, Comprehensible classification} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE





Contrast
Increase Font
Decrease Font
Dyslexic Font