Pregled bibliografske jedinice broj: 154362
A family of quartic Thue inequalities
A family of quartic Thue inequalities // Number Theoretic Algorithms and Related Topics / Drmota, M. ; Larcher, G. ; Tichy, R. ; Winkler, R. (ur.).
Strobl: Technische Universitat Graz, 2004. str. 12-13 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 154362 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A family of quartic Thue inequalities
Autori
Jadrijević, Borka
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Number Theoretic Algorithms and Related Topics
/ Drmota, M. ; Larcher, G. ; Tichy, R. ; Winkler, R. - Strobl : Technische Universitat Graz, 2004, 12-13
Skup
Workshop on Number Theoretic Algorithms and Related Topics
Mjesto i datum
Strobl, Austrija, 27.09.2004. - 01.10.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Thue equations; Pellian equations
Sažetak
We prove that the only primitive solutions of the Thue inequality |x^4-4cx^y+(6c+2)x^2y^2+4cxy^3+y^4| <= 6c+4, where c>=4 is an integer, are (x, y)=(+-1, 0), (0, +-1), (1, +-1), (-1, +-1), (+-1, -+2), (+-2, +-1). Solving Thue equations F(x, y)=m of the special type, using the method of Tzanakis, reduces to solving the system of Pellian equations. The application of Tzanakis method for solving Thue equations has several advantages. We show that some additional advantages appear when one deals with corresponding Thue inequalities. Namely, the theory of continued fractions can be used in order to determine small values of m for which the equation F(x, y)=m has a solution. In particular, we use characterization in terms of continued fractions of alpha of all fractions a/b satisfying the inequality |alpha - a/b| < 2/b^2.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA