Pregled bibliografske jedinice broj: 153282
Adaptation in the Quincunx Wavelet Filter Bank with Applications in Image Denoising
Adaptation in the Quincunx Wavelet Filter Bank with Applications in Image Denoising // Proceedings of the 2004 International TICSP Workshop on Spectral Methods and Multirate Signal Processing, SMMSP 2004 / Astola, Jaako ; Egiazarian, Karen ; Saramaki, Tapio (ur.).
Tampere: Tampere International Center for Signal Processing, 2004. str. 245-252 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 153282 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Adaptation in the Quincunx Wavelet Filter Bank with Applications in Image Denoising
Autori
Vrankić, Miroslav ; Seršić, Damir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2004 International TICSP Workshop on Spectral Methods and Multirate Signal Processing, SMMSP 2004
/ Astola, Jaako ; Egiazarian, Karen ; Saramaki, Tapio - Tampere : Tampere International Center for Signal Processing, 2004, 245-252
Skup
2004 International TICSP Workshop on Spectral Methods and Multirate Signal Processing, SMMSP 2004
Mjesto i datum
Beč, Austrija, 11.09.2004. - 12.09.2004
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
image denoising; wavelets; lifting scheme; adaptive filters
Sažetak
In this paper, we present the realization of an adaptive shift invariant wavelet transform defined on the quincunx grid. The wavelet transform relies on the lifting scheme which enables us to easily introduce the adaptation by splitting the predict stage into two parts. The first part of the predict stage is fixed and guarantees the number of vanishing moments of the wavelet filter bank while the second part can adapt to the local properties of the analyzed image. In this paper, we explore the robustness of the generalized least squares adaptation algorithm to the noise present in the analyzed image. The denoising results obtained with the nonseparable adaptive wavelet transform have been compared with results obtained with both separable and nonseparable fixed wavelet transforms. Also, the empirical Wiener filtering in the wavelet domain has been used in order to further improve the denoising results.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb