Pregled bibliografske jedinice broj: 1532
Cost-sensitive feature reduction applied to a hybrid genetic algorithm
Cost-sensitive feature reduction applied to a hybrid genetic algorithm // 7th International Workshop on Algorithmic Learning Theory ALT-96 / Arikawa, Setsuo ; Sharma, Arun K. (ur.).
Berlin: Springer, 1996. str. 127-134 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1532 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Cost-sensitive feature reduction applied to a hybrid genetic algorithm
Autori
Lavrač, Nada ; Gamberger, Dragan ; Turney, Peter
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
7th International Workshop on Algorithmic Learning Theory ALT-96
/ Arikawa, Setsuo ; Sharma, Arun K. - Berlin : Springer, 1996, 127-134
Skup
7th International Workshop ALT '96
Mjesto i datum
Sydney, Australija, 23.10.1996. - 25.10.1996
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
machine learning; relevant literals; genetic algorithm
Sažetak
Inductive concept learning is concerned with the induction of hypotheses from training data, given appropriate background knowledge about the learning problem. This study is concerned with whether it is possible to detect what information contained in the training data and background knowledge is relevant for solving the learning problem, and whether irrelevant information can be eliminated in preprocessing before starting the learning process. A case study of data preprocessing for a hybrid genetic algorithm shows that the elimination of irrelevant features can substantially improve the efficiency of learning. In addition, cost-sensitive feature elimination can be effective for reducing costs of induced hypotheses.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA