Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 152723

Avoiding data overfitting in scientific discovery: Experiments in functional genomics


Gamberger, Dragan; Lavrač, Nada
Avoiding data overfitting in scientific discovery: Experiments in functional genomics // ECAI 2004 / de Mantaras, Ramon L. ; Saitta, Lorenza (ur.).
Valencia: IOS Press, 2004. str. 470-474 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 152723 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Avoiding data overfitting in scientific discovery: Experiments in functional genomics

Autori
Gamberger, Dragan ; Lavrač, Nada

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
ECAI 2004 / De Mantaras, Ramon L. ; Saitta, Lorenza - Valencia : IOS Press, 2004, 470-474

Skup
16th European Conference on Artificial Intelligence

Mjesto i datum
Valencia, Španjolska, 22.08.2004. - 27.08.2004

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Data overfitting; Scientific discovery; Functional genomics

Sažetak
Functional genomics is a typical scientific discovery domain characterized by a very large number of attributes (genes) relative to the number of examples (observations). The danger of data overfitting is crucial in such domains. This work presents an approach which can help in avoiding data overfitting in supervised inductive learning of short rules that are appropriate for human interpretation. The approach is based on the subgroup discovery rule learning framework, enhanced by methods of restricting the hypothesis search space by exploiting the relevancy of features that enter the rule construction process as well as their combinations that form the rules. A multi-class functional genomics problem of classifying fourteen cancer types based on more than 16000 gene expression values is used to illustrate the methodology.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
0098023

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Dragan Gamberger (autor)


Citiraj ovu publikaciju:

Gamberger, Dragan; Lavrač, Nada
Avoiding data overfitting in scientific discovery: Experiments in functional genomics // ECAI 2004 / de Mantaras, Ramon L. ; Saitta, Lorenza (ur.).
Valencia: IOS Press, 2004. str. 470-474 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gamberger, D. & Lavrač, N. (2004) Avoiding data overfitting in scientific discovery: Experiments in functional genomics. U: de Mantaras, R. & Saitta, L. (ur.)ECAI 2004.
@article{article, author = {Gamberger, Dragan and Lavra\v{c}, Nada}, year = {2004}, pages = {470-474}, keywords = {Data overfitting, Scientific discovery, Functional genomics}, title = {Avoiding data overfitting in scientific discovery: Experiments in functional genomics}, keyword = {Data overfitting, Scientific discovery, Functional genomics}, publisher = {IOS Press}, publisherplace = {Valencia, \v{S}panjolska} }
@article{article, author = {Gamberger, Dragan and Lavra\v{c}, Nada}, year = {2004}, pages = {470-474}, keywords = {Data overfitting, Scientific discovery, Functional genomics}, title = {Avoiding data overfitting in scientific discovery: Experiments in functional genomics}, keyword = {Data overfitting, Scientific discovery, Functional genomics}, publisher = {IOS Press}, publisherplace = {Valencia, \v{S}panjolska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font