Pregled bibliografske jedinice broj: 1516
Conditions for Occam's razor applicability and noise elimination
Conditions for Occam's razor applicability and noise elimination // Machine Learning: ECML-97 / van Someren, Maarten ; Widmer, Gerhard (ur.).
Berlin: Springer, 1997. str. 108-123 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1516 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Conditions for Occam's razor applicability and noise elimination
Autori
Gamberger, Dragan ; Lavrač, Nada
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Machine Learning: ECML-97
/ Van Someren, Maarten ; Widmer, Gerhard - Berlin : Springer, 1997, 108-123
Skup
9th European Conference on Machine Learning
Mjesto i datum
Prag, Češka Republika, 23.04.1997. - 25.04.1997
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
machine learning; noise handling
Sažetak
The Occam's razor principle suggests that among all the correct hypotheses, the simplest hypothesis is the one which best captures the structure of the problem domain and has the highest prediction accuracy when classifying
new instances. This principle is implicitly used also for dealing with noise, in order to avoid overfitting a noisy training set by rule truncation or by pruning of decision trees. This work gives a theoretical framework for the applicability of Occam's razor, developed into a procedure for eliminating noise from a training set. The results of empirical evaluation show the usefulness of the presented approach to noise elimination.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA