Pregled bibliografske jedinice broj: 151071
Integral representation of a series which includes the Mathieu $\mathbf a$-series
Integral representation of a series which includes the Mathieu $\mathbf a$-series // Journal of mathematical analysis and applications, 296 (2004), 1; 309-313 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 151071 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Integral representation of a series which includes the Mathieu $\mathbf a$-series
Autori
Poganj, Tibor K.
Izvornik
Journal of mathematical analysis and applications (0022-247X) 296
(2004), 1;
309-313
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Bessel function of first kind; Dirichlet series; generalized Mathieu series; Gauss hypergeometric function; Laplace integral; Mathieu $\mathbf a$-series
Sažetak
Intgeral expression is deduced for the series $$\mathfrak S(r, \mu, \nu, \mathbf a) = \sum_{;n=1};^\infty \frac{;_2F_1(\frac{;\nu-\mu+1};2, \frac{;\nu-\mu};2+1, \nu+1 -\frac{;r^2};{;a(n)^2};)};{;a(n)^{;\nu-\mu+1};(a(n)^2+r^2)^{;\mu-1/2};};, $$ where $r>0, \mu>1/2, \nu+1>\mu$ and $\mathbf a:\ 0<a(1)<a(2)< \cdots <a(n) \uparrow \infty$ and $_2F_1$ is the Gauss hypergemetric function. The result precizes the intergal expression for the generalized Qi type Mathieu $\mathbf a$-series $S(r, p, \mathbf a) = \sum_{;n=1};^\infty a(n)(a(n)^2+r^2)^{;-p-1};$ given in [J.Inequal. Pure Appl. Math. 4(2003), (4.5)] generalizing some other results by Cerone and Lenard, Tomovski and Qi as well. Bounding inequalities are given for $\mathfrak S(r, \mu, \nu, \mathbf a)$ using the derived intergal expression.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Zentralblatt fur Mathematik
- Referativnij Zhurnal
- Pascal