Pregled bibliografske jedinice broj: 150171
On a problem of Diophantus and Euler
On a problem of Diophantus and Euler // Third Croatian Congress of Mathematics
Split: Hrvatsko matematičko društvo, 2004. str. 30-30 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 150171 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On a problem of Diophantus and Euler
Autori
Dujella, Andrej
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Third Croatian Congress of Mathematics
/ - Split : Hrvatsko matematičko društvo, 2004, 30-30
Skup
Third Croatian Congress of Mathematics
Mjesto i datum
Split, Hrvatska, 16.06.2004. - 18.06.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Diophantine equations; elliptic curves; rational points
Sažetak
Diophantus studied the problem of finding numbers such that the product of any two of them increased by the sum of these two gives a square. He found two triples {;4, 9, 28}; and {;3/10, 7/10, 21/5}; satisfying this property. Euler found a quadruple {;5/2, 9/56, 9/224, 65/224}; and asked if there is an integer solution of this problem. In this talk we will describe a construction of an infinite family of rational quintuples with the same property. The construction is based on the fact that there are infinitely many rational points on the curve y^2 = -(x^2-x-3)(x^2+2x-12). We will also present a recent joint result with Clemens Fuchs, where we proved that there does not exist a set of four positive integers with the above property.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037110
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Andrej Dujella
(autor)