Pregled bibliografske jedinice broj: 150071
Generalization of the Butterfly Theorem in I_2
Generalization of the Butterfly Theorem in I_2 // Treći hrvatski matematički kongres: sažeci izlaganja
Split, 2004. str. 23-23 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 150071 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Generalization of the Butterfly Theorem in I_2
Autori
Beban-Brkić, Jelena
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Treći hrvatski matematički kongres: sažeci izlaganja
/ - Split, 2004, 23-23
Skup
Treći hrvatski matematički kongres = Third Croatian Congress of Mathematics
Mjesto i datum
Split, Hrvatska, 16.06.2004. - 18.06.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
isotropic plane; butterfly theorem; Klamkin's generalisation; better butterfly theorem
Sažetak
A real affine plane A_2 is called an isotropic plane I_2, if in A_2 a metric is induced by an absolute {;f, F};, consisting of the line at infinity f of A_2 and a point F on f. The Butterfly theorem deals with a specific point related to a quadrangle inscribed into a circle. Many solutions to the well-known theorem have been given and various generalisations have lately been discussed. I was first puzzled with the adaptation of the theorem for the Isotropic plane. After giving a few proofs by aid of Isotropic geometry, the generalisations of the theorem followed as a sequel. The Klamkin's generalisation, as well as the "Better Butterfly" Theorem, in I_2, has been proved.
Izvorni jezik
Engleski
Znanstvena područja
Matematika