Pregled bibliografske jedinice broj: 149485
Scaling Properties of Vertical Silicon-on-Nothing (SON) MOSFETs
Scaling Properties of Vertical Silicon-on-Nothing (SON) MOSFETs // Proceedings / MIPRO 2004 / Biljanović, Petar ; Skala, Karolj (ur.).
Zagreb: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2004. str. 49-52 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 149485 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Scaling Properties of Vertical Silicon-on-Nothing (SON) MOSFETs
Autori
Radinković, Ivica ; Jovanović, Vladimir ; Suligoj, Tomislav ; Schulze, Joerg ; Eisele, Ignaz ; Jernigan, Glenn ; Thompson, Phillip E.
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings / MIPRO 2004
/ Biljanović, Petar ; Skala, Karolj - Zagreb : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2004, 49-52
Skup
27th International Convention MIPRO 2004
Mjesto i datum
Opatija, Hrvatska, 24.05.2004. - 28.05.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
fully-depleted; silicon-on-nothing; subthreshold slope; drain induced barrier lowering; short channel effects
Sažetak
The scaling properties of a novel Vertical Fully Depleted Silicon-on-Nothing (VFDSONFET) structure are examined by means of device simulations. It is shown that the structure can be scaled down to 30 nm channel length with the threshold voltage roll-off (*Vt) under 100 mV, subthreshold slope (S) of 83 mV/dec, and drain induced barrier lowering (DIBL) of 98 mV/V, assuming a gate oxide thickness of 2.5 nm and a vacuum under the silicon body region. The short channel effects of the VFDSONFET with 30 nm channel length can be improved by reducing the buried dielectric thickness, silicon body thickness, and using a lower-k material as the buried dielectric. The silicon body thickness has the greatest effect on the short channel effect, resulting from the associated capacitance dominating over the buried dielectric capacitance. The drain field effect in the channel region near the source is analyzed, showing that the use of a lower-k buried dielectric localizes the field near the drain and results in a higher potential barrier near the source. *=delta
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika