Pregled bibliografske jedinice broj: 149231
Estimation of Difficult-to-Measure Process Variables Using Neural Networks - A comparison of simple MLP and RBF neural network properties
Estimation of Difficult-to-Measure Process Variables Using Neural Networks - A comparison of simple MLP and RBF neural network properties // Proceedings of 12th IEEE Mediterranean Electrotechnical Conference, MELECON 2004
Zagreb, 2004. str. 387-390 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 149231 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Estimation of Difficult-to-Measure Process Variables Using Neural Networks - A comparison of simple MLP and RBF neural network properties
Autori
Slišković, Dražen ; Nyarko, Emmanuel Karlo ; Perić, Nedjeljko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 12th IEEE Mediterranean Electrotechnical Conference, MELECON 2004
/ - Zagreb, 2004, 387-390
Skup
The 12th IEEE Mediterranean Electrotechnical Conference, MELECON 2004
Mjesto i datum
Dubrovnik, Hrvatska, 12.05.2004. - 15.05.2004
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
difficult-to-measure process variable; estimation; soft-sensor; artificial neural networks
Sažetak
In this paper, two different artificial neural networks are tested and compared with regard to their application in the estimation of difficult- to-measure process variables. Two of the most commonly used neural networks, the MLP (multi- layer perceptron) and RBF (radial basis function) neural networks, with simple structure and standard training methods are chosen as examples. Neural network training is based on available data from a database of process variables measured over a long time period. The database in this paper is obtained using a simulation model of a real process. Without going deeper into theoretical background, relative properties of these neural networks are given through the results obtained by testing the trained networks and analysis performed on these results.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Temeljne tehničke znanosti