Pregled bibliografske jedinice broj: 149139
Extended Kalman Filter based Mobile Robot Pose Tracking using Occupancy Grid Maps
Extended Kalman Filter based Mobile Robot Pose Tracking using Occupancy Grid Maps // Proceedings of The 12th IEEE Mediterranean Electro-technical Conference, MELECON 2004.
Dubrovnik, 2004. str. 311-314 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 149139 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Extended Kalman Filter based Mobile Robot Pose Tracking using Occupancy Grid Maps
Autori
Ivanjko, Edouard ; Petrović, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of The 12th IEEE Mediterranean Electro-technical Conference, MELECON 2004.
/ - Dubrovnik, 2004, 311-314
Skup
The 12th IEEE Mediterranean Electro-technical Conference, MELECON 2004
Mjesto i datum
Dubrovnik, Hrvatska, 12.05.2004. - 15.05.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
mobile robots ; localization ; Extended Kalman Filter
Sažetak
Mobile robot pose tracking is mostly based on odometry. However, with time, odometric pose tracking accumulates errors in an unbounded fashion. This paper describes a way to decrease the odometry error by using an Extended Kalman Filter (EKF) for fusion of calibrated odometry data and sonar readings. Common approaches for calibrated odometry and sonar fusion use a feature based map which has two uncertainties in the measurement process. One uncertainty is related to the sonar range reading and the other one to the eature/range reading assignment. Our approach is adapted to an occupancy grid map which has only the sonar range reading uncertainty in the measurement process. Experimental results on the mobile robot Pioneer 2DX show improved accuracy of the pose estimation compared to the calibrated odometry.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus