Pregled bibliografske jedinice broj: 148541
Direct Largrange - Yen - type interpolation of random processes
Direct Largrange - Yen - type interpolation of random processes // Teoriâ slučajnyh processov, 9(25) (2003), 3-4; 242-254 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 148541 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Direct Largrange - Yen - type interpolation of random processes
Autori
Olenko, Andriy ; Poganj, Tibor
Izvornik
Teoriâ slučajnyh processov (0321-3900) 9(25)
(2003), 3-4;
242-254
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
random fields; function of exponential type; Frech\'et- (semi-) variation; Kadets-Sun-Zhu 1/4-theorem; Kotel'nikov-Shannon sampling formula; Lagrange-Yen interpolator; mean square convergence; truncation error upper bound; weak Cram\'er class random fields
Sažetak
We consider the space $L^2(\mathbb R^d ; \Omega($ such that is consisting ffrom $d$-dimensional weka Cram\'er random fields with some conditions on spectral densities. In the paper is shown that the finite, time varying Kotel'nikov-Shannon sum of such that field, which is nonuniformly sampled in the Yen sense, approximates the initial random field in the mean square and almost sure sense with precribed realtive approximation error level. We are focusing o the multidimensional Kotel'nikov-Shannon sampling formula such that remains valid when just finite size sampling knots are deviated from the uniform spacing. Finally, convergence rate estimates are given, oversampling is discussed and an extension is proposed to the $L^\alpha(\mathbb R^d ; \Omega), \alpha \in [0, 2]$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Zentralblatt fur Mathematik
- Referativnij Zhurnal
- Pascal