Pregled bibliografske jedinice broj: 148250
Multidimensional Lagrange-Yen-type interpolation via Kotel'nikov-Shannon sampling formulas
Multidimensional Lagrange-Yen-type interpolation via Kotel'nikov-Shannon sampling formulas // Ukrainian Mathematical Journal, 55 (2003), 11; 1810-1827 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 148250 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multidimensional Lagrange-Yen-type interpolation via Kotel'nikov-Shannon sampling formulas
Autori
Poganj, Tibor
Izvornik
Ukrainian Mathematical Journal (0041-5995) 55
(2003), 11;
1810-1827
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
multidimensional sampling; interpolation; Lagrange interpolation; Yen interpolation; Paley - Wiener space; Kotlanikov-Shannon formula; truncation error upper bound; finite interpolation formula; weighted interpolation; Kadets theorem; Sun - Zhou theorem
Sažetak
Direct finite interpolation formulas are developed for the Paley-Wiener function spaces $L^2_\Diamond$ and $L^2_{; ; [-\pi, \pi]^d}; ; $, where $L^2_\Diamond$ contains all bivariate functions whose Fourier spectrum is supported by the set $\Diamond = {; ; \rm Cl}; ; \{; ; (u, v)| |u|+|v|< \pi\}; ; $, while in $L^2_{; ; [-\pi, \pi]^d}; ; $ the Fourier spectrum support set of its $d$-variate entire elements is $[-\pi, \pi]^d$. The multidimensional Kotel'nikov - Shannon sampling formula reamins valid when only finitely many sampling knots are deviated from the uniform sampling. By using this interpolation procedure, we truncate a sampling sum to its irregularly sampled part. Upper bounds of the truncation error are obtained in both cases. According to the Sun-Zhou extension of the Kadets 1/4 - theorem, the magnitude of deviations are limited coordinatewise to 1/4. To avoid this inconvenience, we introduce the weighted Kotel/nikov - Shannon sampling sums. For $L^2_{; ; [-\pi, \pi]^d}; ; $ Lagrange-type direct finite interpolation fromulas are given. Finally, convergence - rate questions are discussed.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Zentralblatt fur Mathematik
- Referativnij Zhurnal
- Pascal