Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 148250

Multidimensional Lagrange-Yen-type interpolation via Kotel'nikov-Shannon sampling formulas


Poganj, Tibor
Multidimensional Lagrange-Yen-type interpolation via Kotel'nikov-Shannon sampling formulas // Ukrainian Mathematical Journal, 55 (2003), 11; 1810-1827 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 148250 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Multidimensional Lagrange-Yen-type interpolation via Kotel'nikov-Shannon sampling formulas

Autori
Poganj, Tibor

Izvornik
Ukrainian Mathematical Journal (0041-5995) 55 (2003), 11; 1810-1827

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
multidimensional sampling; interpolation; Lagrange interpolation; Yen interpolation; Paley - Wiener space; Kotlanikov-Shannon formula; truncation error upper bound; finite interpolation formula; weighted interpolation; Kadets theorem; Sun - Zhou theorem

Sažetak
Direct finite interpolation formulas are developed for the Paley-Wiener function spaces $L^2_\Diamond$ and $L^2_{; ; [-\pi, \pi]^d}; ; $, where $L^2_\Diamond$ contains all bivariate functions whose Fourier spectrum is supported by the set $\Diamond = {; ; \rm Cl}; ; \{; ; (u, v)| |u|+|v|< \pi\}; ; $, while in $L^2_{; ; [-\pi, \pi]^d}; ; $ the Fourier spectrum support set of its $d$-variate entire elements is $[-\pi, \pi]^d$. The multidimensional Kotel'nikov - Shannon sampling formula reamins valid when only finitely many sampling knots are deviated from the uniform sampling. By using this interpolation procedure, we truncate a sampling sum to its irregularly sampled part. Upper bounds of the truncation error are obtained in both cases. According to the Sun-Zhou extension of the Kadets 1/4 - theorem, the magnitude of deviations are limited coordinatewise to 1/4. To avoid this inconvenience, we introduce the weighted Kotel/nikov - Shannon sampling sums. For $L^2_{; ; [-\pi, \pi]^d}; ; $ Lagrange-type direct finite interpolation fromulas are given. Finally, convergence - rate questions are discussed.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0112011

Ustanove:
Pomorski fakultet, Rijeka

Profili:

Avatar Url Tibor Poganj (autor)

Citiraj ovu publikaciju:

Poganj, Tibor
Multidimensional Lagrange-Yen-type interpolation via Kotel'nikov-Shannon sampling formulas // Ukrainian Mathematical Journal, 55 (2003), 11; 1810-1827 (međunarodna recenzija, članak, znanstveni)
Poganj, T. (2003) Multidimensional Lagrange-Yen-type interpolation via Kotel'nikov-Shannon sampling formulas. Ukrainian Mathematical Journal, 55 (11), 1810-1827.
@article{article, author = {Poganj, Tibor}, year = {2003}, pages = {1810-1827}, keywords = {multidimensional sampling, interpolation, Lagrange interpolation, Yen interpolation, Paley - Wiener space, Kotlanikov-Shannon formula, truncation error upper bound, finite interpolation formula, weighted interpolation, Kadets theorem, Sun - Zhou theorem}, journal = {Ukrainian Mathematical Journal}, volume = {55}, number = {11}, issn = {0041-5995}, title = {Multidimensional Lagrange-Yen-type interpolation via Kotel'nikov-Shannon sampling formulas}, keyword = {multidimensional sampling, interpolation, Lagrange interpolation, Yen interpolation, Paley - Wiener space, Kotlanikov-Shannon formula, truncation error upper bound, finite interpolation formula, weighted interpolation, Kadets theorem, Sun - Zhou theorem} }
@article{article, author = {Poganj, Tibor}, year = {2003}, pages = {1810-1827}, keywords = {multidimensional sampling, interpolation, Lagrange interpolation, Yen interpolation, Paley - Wiener space, Kotlanikov-Shannon formula, truncation error upper bound, finite interpolation formula, weighted interpolation, Kadets theorem, Sun - Zhou theorem}, journal = {Ukrainian Mathematical Journal}, volume = {55}, number = {11}, issn = {0041-5995}, title = {Multidimensional Lagrange-Yen-type interpolation via Kotel'nikov-Shannon sampling formulas}, keyword = {multidimensional sampling, interpolation, Lagrange interpolation, Yen interpolation, Paley - Wiener space, Kotlanikov-Shannon formula, truncation error upper bound, finite interpolation formula, weighted interpolation, Kadets theorem, Sun - Zhou theorem} }

Časopis indeksira:


  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews
  • Zentralblatt fur Mathematik
  • Referativnij Zhurnal
  • Pascal





Contrast
Increase Font
Decrease Font
Dyslexic Font