Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 14724

A turbulent flow shape optimization method for nozzle design


Mrša, Zoran
A turbulent flow shape optimization method for nozzle design // PVP-Vol. 377-2 Computational Technologies for Fluid/Thermal/Structural/Chemical Systems with Industrial Applications / Klein, Chris R ; Kawano, Satoyuki ; Kudriavtsev, Vladimir V. (ur.).
San Diego (CA), Sjedinjene Američke Države: American Society of Mechanical Engineers (ASME), 1998. str. 87-92 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 14724 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A turbulent flow shape optimization method for nozzle design

Autori
Mrša, Zoran

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
PVP-Vol. 377-2 Computational Technologies for Fluid/Thermal/Structural/Chemical Systems with Industrial Applications / Klein, Chris R ; Kawano, Satoyuki ; Kudriavtsev, Vladimir V. - : American Society of Mechanical Engineers (ASME), 1998, 87-92

Skup
The 1998 ASME/JSME Joint Pressure Vessels and Piping Conference

Mjesto i datum
San Diego (CA), Sjedinjene Američke Države, 26.07.1998. - 30.07.1998

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
shape optimization; nozzle design; genetic algorithm

Sažetak
The paper presents a shape optimization method for nozzle design. Using commercial turbulent flow modeling software FLUENT and conjugate gradient method and genetic algorithm alternately, the energy losses, defined as the difference of total mechanical energy flux in inflow and outflow cross-sections, are minimized in the set of admissible nozzle shapes. The shape of the nozzle is parameterized by cubic Bezier spline, the coordinates of control points being optimizing parameters. The macro code has been developed that couples all three elements of the modeling and optimization process: preBFC automatic mesh generator, FLUENT turbulent k-e flow simulator and conjugate gradient and genetic algorithm optimization module. The analysis of the numerical results of the nozzle shape optimization leads to the main conclusion that a minimum number of two parameters are enough for the desired accuracy of the solution. Compared to the circular arc, the optimum shape is more concave, starting and ending with smaller curvature and with greater curvature in the middle part.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Projekti:
069002

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Zoran Mrša (autor)


Citiraj ovu publikaciju:

Mrša, Zoran
A turbulent flow shape optimization method for nozzle design // PVP-Vol. 377-2 Computational Technologies for Fluid/Thermal/Structural/Chemical Systems with Industrial Applications / Klein, Chris R ; Kawano, Satoyuki ; Kudriavtsev, Vladimir V. (ur.).
San Diego (CA), Sjedinjene Američke Države: American Society of Mechanical Engineers (ASME), 1998. str. 87-92 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Mrša, Z. (1998) A turbulent flow shape optimization method for nozzle design. U: Klein, C., Kawano, S. & Kudriavtsev, V. (ur.)PVP-Vol. 377-2 Computational Technologies for Fluid/Thermal/Structural/Chemical Systems with Industrial Applications.
@article{article, author = {Mr\v{s}a, Zoran}, year = {1998}, pages = {87-92}, keywords = {shape optimization, nozzle design, genetic algorithm}, title = {A turbulent flow shape optimization method for nozzle design}, keyword = {shape optimization, nozzle design, genetic algorithm}, publisher = {American Society of Mechanical Engineers (ASME)}, publisherplace = {San Diego (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Mr\v{s}a, Zoran}, year = {1998}, pages = {87-92}, keywords = {shape optimization, nozzle design, genetic algorithm}, title = {A turbulent flow shape optimization method for nozzle design}, keyword = {shape optimization, nozzle design, genetic algorithm}, publisher = {American Society of Mechanical Engineers (ASME)}, publisherplace = {San Diego (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font