Pregled bibliografske jedinice broj: 147078
AN INEQUALITY FOR PROBABILITY DENSITY FUNCTIONS ARISING FROM A DISTINGUISHABILITY PROBLEM
AN INEQUALITY FOR PROBABILITY DENSITY FUNCTIONS ARISING FROM A DISTINGUISHABILITY PROBLEM // Journal of the Australian Mathematical Society Series B-Applied Mathematics, 39 (1998), 3; 350-354 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 147078 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
AN INEQUALITY FOR PROBABILITY DENSITY FUNCTIONS ARISING FROM A DISTINGUISHABILITY PROBLEM
Autori
Guljaš, Boris ; Pearce CEM ; Pečarić, Josip
Izvornik
Journal of the Australian Mathematical Society Series B-Applied Mathematics (0334-2700) 39
(1998), 3;
350-354
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Absolute continuity
Sažetak
An integral inequality is established involving a probability density function on the real line and its first two derivatives. This generalizes an earlier result of Sate and Watari. If f denotes the probability density function concerned, the inequality we prove is that integral(-infinity)(+infinity) [f'(x)(2)](gamma alpha/[f(x)](gamma(beta+1)-1) dx less than or equal to (2 alpha-1/beta-1)(gamma alpha) (integral(-infinity)(+infinity)\f ''(x)\(alpha-1)/[f(x)](beta-alpha) dx)(gamma) under the conditions beta > alpha > 1 and 1/(beta + 1) < gamma less than or equal to 1. [References: 6]
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus