Pregled bibliografske jedinice broj: 144847
There are only finitely many Diophantine quintuples
There are only finitely many Diophantine quintuples // Journal für die reine und angewandte Mathematik, 566 (2004), 1; 183-214 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 144847 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
There are only finitely many Diophantine quintuples
Autori
Dujella, Andrej
Izvornik
Journal für die reine und angewandte Mathematik (0075-4102) 566
(2004), 1;
183-214
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Diophantine quintuples; Fermat
Sažetak
A set of m positive integers is called a Diophantine m-tuple if the product of its any two distinct elements increased by 1 is a perfect square. Diophantus found a set of four positive rationals with the above property. The first Diophantine quadruple was found by Fermat (the set {; ; 1, 3, 8, 120}; ; ). Baker and Davenport proved that this particular quadruple cannot be extended to a Diophantine quintuple. In this paper, we prove that there does not exist a Diophantine sextuple and that there are only finitely many Diophantine quintuples.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037110
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Andrej Dujella
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews