ࡱ> Y ` bjbjWW -==` ]2222222FFFFF R Fjhjjjjjj$YM222j:22hFF2222hh22h^ A$VVFF.hMethods for evaluation of seismic drift in R/C frames V.Sigmund & M.Bosnjak-Klecina University J.J.Strossmayer, Department of CE, Osijek, Croatia K.Herman University of Zagreb, Department of CE, Zagreb, Croatia Keywords: seismic drift, nonlinear analysis, N2-method, linear displacement method The building codes use strength as the main design parameter and place computation of forces at the center of earthquake resistant design, relegating drift calculations to the background in design process. In the case of extreme earthquakes when yielding occurs in a structure, formation of a desired earthquake resistant mechanism does not in itself guarantee that repair cost would be tolerable. Interstory Drift Ratio (interstory displacement divided by the interstory height) represents an acceptable measure of distortion and damage (Algan, 1983). It has been proved in many research works that adequate strength does not have a decisive influence on the expected structural drift which is sensitive to strength only in short period systems. Therefore, maximum displacements, rather than maximum stresses, represent the proper design criteria Three different methods for evaluation of the expected maximum story displacements and interstory drifts during extreme seismic events are evaluated and compared. The analyzed methods are: (a) Member-by-member non-linear analysis; (b) N2 method and (c) Linear elastic analysis. In the course of the study, nonlinear drifts (roof and story displacements, displaced shape and Interstory Drift Ratios) of three model structures were analyzed. The MDOF (exact) method and N2 method require much longer time to prepare the necessary input data and need more parameters that are uncertain than LINEAR method. Among them N2 is less sensitive and can be applied for the evaluation of the existing buildings, or as a second step in design process. Designers interested only in maximum displacements, or who evaluate the chosen structural system based on its expected damage, can get consistent results by using LINEAR spectral analysis for structural period equal to  EMBED Equation.2 *To and the 2% displacement response spectra. Considering many uncertainties involved in establishing the input design motion, material characteristics and member behavior, LINEAR spectral analysis gives a good idea of expected lateral drifts during inelastic response. 'Pvw 0 9 : M N O P U V ^ _ ` NH jEHUj8 UVmH jUCJmHCJNHCJ66T&'wx0 1 ^ _ ` $d$d6T&'wx0 1 ^ _ ` + 0&P . A!"#$M %#:.S,UUAUUA:.`L are: (a) Member-by-member non-linear analysis; (b) N2 method and (c) Linear elastic analysis. In )"##    !#Dd|TB  S A? 2bH9!Im>D`!6H9!Im` 0XJx]JAƿo?0Ւ")}HRXbrWZ^skٍE7O[8_-)P1}SNn˺#Nnd_"dz4{pZ؎L|́ %T5{2e]`O +ՆS͏xw!μ+~?_i ]nP,(xFP!Lm"3ߞ݊"IXV-~517m1DA#({ |*.B/BLGf XI1DAc({ )p9*YJ-$I䪠6'bI1DA({ )p;*YJ-$I쪠6'bI.1DA({pӻJYJcBίN*QfO7IW1DB#({Q6 *YJqD*䪠QfO7I@2DBchn+ p9*YBqD*䪠QfO7IA2DBhn+гӻJYB*I쪠1fO7Ijs2DBhn+ ʨmmaJB]fiI(If(1DC#({E2~ji" @T-(Iȗ1DCc({ YJ)*c{+ .(Ig1DC({ b  { q @T-(I1DC({E2`ji"Ɂ VbO((Ig1DD#({= YJvW|+ VbO((Iȏ1DDc({4I]J.U >R%w+ VbC(HI>1DD({ .U /+ VbC(HIȒ01DDhn+ B * uW|+^R(I`1DE#({%2`jЀa|Ɂc~aShhIZ1DEc({E2~jߘ}  b#hIq1DE({ #*5+c~aShhIp1DE({ԄI]J*C%w+ ~aShhI1DF#({ԄI]J*{p RhIfV1DFc({%2`j甴*4+RhIS1DF({E2~j$ ˰C* '^#hI1DF({E2`j4 ˰C*Ɂ'^#hI1DG#({ cNI׈7+RhI1DGc({I]JFI׈E%w+ RhIzX1DG({tI]J*} RhIȼ91DG({%2`j*6+RhI).1DH#({ ˰C*<+ȥI1DHc({tI]J ˰C*KR%w+ ȥI1DH({4I]Jr2-b*IR%w+ *nȨIiF1DH({<%2~jW=qB:q *nȨI1DI#({\%2`jO=qB:qɁ*nȨIr1DIc({r2-b*:+*nȨI;61DI({I]JW=qB:E%w+ iHIU(1DI({ cO=qB:7+iHIü1DJ#({tI]Jmg2} iHIȫ1DJc({%2`jmg26+iHI*1DJ({ԄI]Jmc:C%w+ Ҡ'IB1DJ({%2~j :|p Ҡ'I,1DK#({%2`j :|Ɂ'IȦ1DKc({ #mc:5+'Iȋ1DK({U=  :zɁ+WHIc 1DK({%2~j : *c{+ +WHIgP1DL#({ԄI]Jmc:{p iHIȥu1DLc({%2`jmc:4+iHIr1DL({vL5j.B=$+ XI>1DL({2j.B{f{+  XIȯ1DM#({\%2~jYJy 6'bIf1DMc({\%2`jYJyɁ6'bIȩm1DM({ YJ/+QfO7I1DM({4I]JYJ>R%w+ QfO7IU2DN#hn+%2~jYB>R%w+ QfO7I=2DNchn+ YBwpɁ1fO7IT2DNhn+5= mmaJ *c{+ iI(I41DN({xEi"]] @T-(I1DO#({= YJv|, .(I1DOc({=  { ]=] @T-(IB1DO({xEi"[] VbO((I$J1DO({ Ip%+YJC$I VbO((IȺ1DP#({gלq.U  ^q, VbC(HI1DPc({:.U |hH VbC(HIb1DPhn+= * B$I ^R(I`D1DP({xEЀaI] c~aShhIgG1DQ#({/xEߘ}V] b#hIF1DQc({w::*\H c~aShhIL'1DQ({לq*^q, ~aShhIT1DQ({לq*H=  Root Entry  Fj]SJ$VV Data  WordDocument -ObjectPool @0$VVJ$VV_951721708F@0$VV@0$VVOle CompObjfObjInfo  !"#$%&'()*+,-./02ࡱ>  FMicrosoft Equation 2.0 DS Equation Equation.29qࡱ>ࡱ> qJmJ8rJ  2 ࡱOh+'0 $0 L X d p|Equation Native 41TableSummaryInformation( DocumentSummaryInformation8 6Methods for evaluation of seismic drift in R/C framesiethSIGMUNDIGM Normal.dot SIGMUND5GMMicrosoft Word 8.0i@xA@LEUV@]S@#VV[ࡱ> ՜.+,D՜.+,d  hp  SIGMUND~ j 6Methods for evaluation of seismic drift in R/C frames Title 6> _PID_GUIDAN{BEDEA2E4-BF47-11D1-9295-444553540000} [$@$NormalmH <A@<Default Paragraph FontPOPParagraph after heading $dCJ8O8 Affiliation d$x60O0 Author(s)dCJ6O6Keywords$dCJJO2JLijst opsom. teken$dCJ,>@,Title dhCJ .B@R. Body TextCJmH` ` ` ` 9MO` :?SOx/b ?SPx/b SIGMUND4C:\MSOffice\Winword\VLATKO\CLANCI\paris\sigmfdab.doc@SSԤS?` `@GTimes New Roman5Symbol3& Arial"1h#U#&R#&[!0d~ ?5Methods for evaluation of seismic drift in R/C framesSIGMUNDSIGMUND  FMicrosoft Word Document MSWordDocWord.Document.89qࡱCompObj1j