Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 13624

An Efficient Newton-type learning Algorithm for MLP Neural Networks


Petrović, Ivan; Baotić, Mato; Perić, Nedjeljko
An Efficient Newton-type learning Algorithm for MLP Neural Networks // Proceedings od the International ICSC/IFAC Symposium on Neural Computation - NC'98 / Heiss M. (ur.).
Beč, Austrija: Academic Press, 1998. str. 551-557 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 13624 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An Efficient Newton-type learning Algorithm for MLP Neural Networks

Autori
Petrović, Ivan ; Baotić, Mato ; Perić, Nedjeljko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings od the International ICSC/IFAC Symposium on Neural Computation - NC'98 / Heiss M. - : Academic Press, 1998, 551-557

Skup
International ICSC/IFAC Symposium on Neural Computation - NC'98

Mjesto i datum
Beč, Austrija, 23.09.1998. - 25.09.1998

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Newton-type learning Algorithm; MLP Neural Networks

Sažetak
Multilayer perceptrons (MLP) are the most often used neural networks in function approximation applications. They learn by modifying the strength of interconnections between neurons, according to some specified rule called learning algorithm. Many different learning algorithms have been reported in the literature. The majority of them are based on gradient numerical optimization methods such as the steepest descent, conjugate gradient, quasi-Newton and Newton methods. In this paper we have proposed a new Newton-type learning algorithm which is a modification of the popular Levenberg-Marquardt learning algorithm. The algorithm has been compared with the original Levenberg-Marquardt algorithm regarding the convergence speed and the computation complexity on four nonlinear test functions. Also the effects of the data sets size and extremely high accuracy requirements on the efficiency of the algorithms have been analyzed. To provide the algorithms comparison as objective as possible, both algorithms were implemented on the same manner and the network weights were initialized equally for both of them. The proposed algorithm exhibited better performances in all test cases.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
036037
036006

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Nedjeljko Perić (autor)

Avatar Url Mato Baotić (autor)

Avatar Url Ivan Petrović (autor)


Citiraj ovu publikaciju:

Petrović, Ivan; Baotić, Mato; Perić, Nedjeljko
An Efficient Newton-type learning Algorithm for MLP Neural Networks // Proceedings od the International ICSC/IFAC Symposium on Neural Computation - NC'98 / Heiss M. (ur.).
Beč, Austrija: Academic Press, 1998. str. 551-557 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Petrović, I., Baotić, M. & Perić, N. (1998) An Efficient Newton-type learning Algorithm for MLP Neural Networks. U: Heiss M. (ur.)Proceedings od the International ICSC/IFAC Symposium on Neural Computation - NC'98.
@article{article, author = {Petrovi\'{c}, Ivan and Baoti\'{c}, Mato and Peri\'{c}, Nedjeljko}, year = {1998}, pages = {551-557}, keywords = {Newton-type learning Algorithm, MLP Neural Networks}, title = {An Efficient Newton-type learning Algorithm for MLP Neural Networks}, keyword = {Newton-type learning Algorithm, MLP Neural Networks}, publisher = {Academic Press}, publisherplace = {Be\v{c}, Austrija} }
@article{article, author = {Petrovi\'{c}, Ivan and Baoti\'{c}, Mato and Peri\'{c}, Nedjeljko}, year = {1998}, pages = {551-557}, keywords = {Newton-type learning Algorithm, MLP Neural Networks}, title = {An Efficient Newton-type learning Algorithm for MLP Neural Networks}, keyword = {Newton-type learning Algorithm, MLP Neural Networks}, publisher = {Academic Press}, publisherplace = {Be\v{c}, Austrija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font