Pregled bibliografske jedinice broj: 134244
Optimal damping of infinitedimensional vibrational systems
Optimal damping of infinitedimensional vibrational systems // Conference on Applied Mathematics and Scientific Computing ApplMath03 / Rogina, M. ; Drmač, Z. ; Singer, S. ; Tambača, J. (ur.).
Zagreb: Matematički Odjel PMF-a, Sveučilište u Zagrebu, 2003. str. 28-28 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 134244 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Optimal damping of infinitedimensional vibrational systems
Autori
Nakić, Ivica
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Conference on Applied Mathematics and Scientific Computing ApplMath03
/ Rogina, M. ; Drmač, Z. ; Singer, S. ; Tambača, J. - Zagreb : Matematički Odjel PMF-a, Sveučilište u Zagrebu, 2003, 28-28
Skup
Conference on Applied Mathematics and Scientific Computing ApplMath03
Mjesto i datum
Brijuni, Hrvatska, 23.06.2003. - 27.06.2003
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
damping; vibrational systems
Sažetak
We introduce the notion of an abstract vibrational system. Most mechanical vibrational systems can be written in this form. Under some natural conditions, we solve this equation by the use of the semigroup theory technique. An useful optimal damping criterion is \[ \min_{\gamma} \int_{\|u_0\|=1} \left(\int_0^{\infty} E(t ; u_0)\mathrm{d}t\right)\mathrm{d}\sigma, \] where $E(t ; u_0)$ is the energy of the system with initial state $u_0$ at the moment $t$, and $\sigma$ is some probability measure on the unit sphere. In other words, we minimize the average total energy of the system over all admissible damping forms. We give a precise mathematical formulation of this criterion and show how to choose an appropriate measure $\sigma$. Also, in the case of systems which posses an internal damping, we find the optimal damping forms.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037122
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Ivica Nakić
(autor)