Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 133543

Relations for annihilating fields of standard modules for affine Lie algebras


Primc, Mirko
Relations for annihilating fields of standard modules for affine Lie algebras // Vertex Operator Algebras in Mathematics and Physics, Fields Institute Communications, Volume 39 / Berman, Stephen ; Billig, Yuly ; Huang, Yi-Zhi ; Lepowsky, James (ur.).
Providence (RI): American Mathematical Society (AMS), 2003. str. 169-187 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 133543 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Relations for annihilating fields of standard modules for affine Lie algebras

Autori
Primc, Mirko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Vertex Operator Algebras in Mathematics and Physics, Fields Institute Communications, Volume 39 / Berman, Stephen ; Billig, Yuly ; Huang, Yi-Zhi ; Lepowsky, James - Providence (RI) : American Mathematical Society (AMS), 2003, 169-187

Skup
Vertex Operator Algebras in Mathematics and Physics

Mjesto i datum
Toronto, Kanada, 23.10.2000. - 27.10.2000

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
vertex operators; Rogers-Ramanujan identities

Sažetak
J.~Lepowsky and R.~L.~Wilson initiated the approach to combinatorial Rogers-Ramanujan type identities via the vertex operator constructions of representations of affine Lie algebras. In a joint work with Arne Meurman this approach is developed further in the framework of vertex operator algebras. The main ingredients of that construction are defining relations for standard modules and relations among them. The arguments involve both representation theory and combinatorics, the final results hold only for affine Lie algebras $A_1^{;(1)};$ and $A_2^{;(1)};$. In the present paper some of those arguments are formulated and extended for general affine Lie algebras. The main result is a kind of rank theorem, guaranteeing the existence of combinatorial relations among relations, provided that certain purely combinatorial quantities are equal to dimensions of certain representation spaces. Although the result holds in quite general setting, applications are expected mainly for standard modules of affine Lie algebras.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0037125

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Mirko Primc (autor)


Citiraj ovu publikaciju:

Primc, Mirko
Relations for annihilating fields of standard modules for affine Lie algebras // Vertex Operator Algebras in Mathematics and Physics, Fields Institute Communications, Volume 39 / Berman, Stephen ; Billig, Yuly ; Huang, Yi-Zhi ; Lepowsky, James (ur.).
Providence (RI): American Mathematical Society (AMS), 2003. str. 169-187 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Primc, M. (2003) Relations for annihilating fields of standard modules for affine Lie algebras. U: Berman, S., Billig, Y., Huang, Y. & Lepowsky, J. (ur.)Vertex Operator Algebras in Mathematics and Physics, Fields Institute Communications, Volume 39.
@article{article, author = {Primc, Mirko}, year = {2003}, pages = {169-187}, keywords = {vertex operators, Rogers-Ramanujan identities}, title = {Relations for annihilating fields of standard modules for affine Lie algebras}, keyword = {vertex operators, Rogers-Ramanujan identities}, publisher = {American Mathematical Society (AMS)}, publisherplace = {Toronto, Kanada} }
@article{article, author = {Primc, Mirko}, year = {2003}, pages = {169-187}, keywords = {vertex operators, Rogers-Ramanujan identities}, title = {Relations for annihilating fields of standard modules for affine Lie algebras}, keyword = {vertex operators, Rogers-Ramanujan identities}, publisher = {American Mathematical Society (AMS)}, publisherplace = {Toronto, Kanada} }




Contrast
Increase Font
Decrease Font
Dyslexic Font