Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 132671

Similarity based approach to protein domain architecture prediction


Vlahoviček, Kristian; Kajan, Laszlo; Pongor, Sandor
Similarity based approach to protein domain architecture prediction // European Conferrence on Computational Biology
Saarbrücken, Njemačka, 2002. (poster, međunarodna recenzija, neobjavljeni rad, znanstveni)


CROSBI ID: 132671 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Similarity based approach to protein domain architecture prediction

Autori
Vlahoviček, Kristian ; Kajan, Laszlo ; Pongor, Sandor

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni

Skup
European Conferrence on Computational Biology

Mjesto i datum
Saarbrücken, Njemačka, 06.10.2002. - 09.10.2002

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Protein domain; Domain architecture; Domain prediction; database

Sažetak
Increasing amount of primary biological information originating from genome sequencing projects calls for new approaches to large-scale classification and annotation methods. We present a method based on sequence similarity that can be applied to both functional characterization of whole proteins as well as prediction of domain architecture. The method consists of building an exemplar-based database and preprocessing it, by running a database vs. database comparison, to yield threshold values of biologically significant similarities [1-3]. The annotation of domains is then carried out by comparing an unknown query sequence against the database and processing the search output using the predetermined thresholds. The method performance evaluation shows overall prediction success rate of 90% on a set of 140 000 protein domains divided in 2000 domain groups, each containing 3-7000 members, with median specificity and sensitivity per group of 98% and 93%, respectively. The ease of implementation, prediction speed and method robustness make it an interesting candidate for large-scale annotation projects, as it involves minimal manual intervention in both training and prediction. The database of annotated protein domains - SBASE, and the domain architecture prediction system are available via the www interface (figure 1) at http://www.icgeb.org/sbase.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Biologija, Računarstvo



POVEZANOST RADA


Projekti:
0119632

Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Kristian Vlahoviček (autor)

Citiraj ovu publikaciju:

Vlahoviček, Kristian; Kajan, Laszlo; Pongor, Sandor
Similarity based approach to protein domain architecture prediction // European Conferrence on Computational Biology
Saarbrücken, Njemačka, 2002. (poster, međunarodna recenzija, neobjavljeni rad, znanstveni)
Vlahoviček, K., Kajan, L. & Pongor, S. (2002) Similarity based approach to protein domain architecture prediction. U: European Conferrence on Computational Biology.
@article{article, author = {Vlahovi\v{c}ek, Kristian and Kajan, Laszlo and Pongor, Sandor}, year = {2002}, keywords = {Protein domain, Domain architecture, Domain prediction, database}, title = {Similarity based approach to protein domain architecture prediction}, keyword = {Protein domain, Domain architecture, Domain prediction, database}, publisherplace = {Saarbr\"{u}cken, Njema\v{c}ka} }
@article{article, author = {Vlahovi\v{c}ek, Kristian and Kajan, Laszlo and Pongor, Sandor}, year = {2002}, keywords = {Protein domain, Domain architecture, Domain prediction, database}, title = {Similarity based approach to protein domain architecture prediction}, keyword = {Protein domain, Domain architecture, Domain prediction, database}, publisherplace = {Saarbr\"{u}cken, Njema\v{c}ka} }




Contrast
Increase Font
Decrease Font
Dyslexic Font