Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 129995

Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions


Maravić, Gordana; Bujnicki, Janusz, M.; Feder, Marcin; Pongor, Sandor; Flögel, Mirna
Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions // Nucleic Acids Research, 32 (2003), 16; 4941-9 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 129995 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions

Autori
Maravić, Gordana ; Bujnicki, Janusz, M. ; Feder, Marcin ; Pongor, Sandor ; Flögel, Mirna

Izvornik
Nucleic Acids Research (0305-1048) 32 (2003), 16; 4941-9

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
site-directed mutagenesis; antibiotic resistance; methylation; protein-RNA interactions

Sažetak
The Erm family of adenine-N(6) methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Hence, these proteins are important potential drug targets. Despite the availability of the NMR and crystal structures of two members of the family (ErmAM and ErmC', respectively) and extensive studies on the RNA substrate, the substrate-binding site and the amino acids involved in RNA recognition by the Erm MTases remain unknown. It has been proposed that the small C-terminal domain functions as a target-binding module, but this prediction has not been tested experimentally. We have undertaken structure-based mutational analysis of 13 charged or polar residues located on the predicted rRNA-binding surface of ErmC' with the aim to identify the area of protein-RNA interactions. The results of in vivo and in vitro analyses of mutant protein suggest that the key RNA-binding residues are located not in the small domain, but in the large catalytic domain, facing the cleft between the two domains. Based on the mutagenesis data, a preliminary three-dimensional model of ErmC' complexed with the minimal substrate was constructed. The identification of the RNA-binding site of ErmC' may be useful for structure-based design of novel drugs that do not necessarily bind to the cofactor-binding site common to many S-adenosyl-L- methionine-dependent MTases, but specifically block the substrate-binding site of MTases from the Erm family.

Izvorni jezik
Engleski

Znanstvena područja
Biologija



POVEZANOST RADA


Projekti:
0006611

Ustanove:
Farmaceutsko-biokemijski fakultet, Zagreb


Citiraj ovu publikaciju:

Maravić, Gordana; Bujnicki, Janusz, M.; Feder, Marcin; Pongor, Sandor; Flögel, Mirna
Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions // Nucleic Acids Research, 32 (2003), 16; 4941-9 (međunarodna recenzija, članak, znanstveni)
Maravić, G., Bujnicki, Janusz, M., Feder, M., Pongor, S. & Flögel, M. (2003) Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions. Nucleic Acids Research, 32 (16), 4941-9.
@article{article, author = {Maravi\'{c}, Gordana and Feder, Marcin and Pongor, Sandor and Fl\"{o}gel, Mirna}, year = {2003}, pages = {4941-9}, keywords = {site-directed mutagenesis, antibiotic resistance, methylation, protein-RNA interactions}, journal = {Nucleic Acids Research}, volume = {32}, number = {16}, issn = {0305-1048}, title = {Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions}, keyword = {site-directed mutagenesis, antibiotic resistance, methylation, protein-RNA interactions} }
@article{article, author = {Maravi\'{c}, Gordana and Feder, Marcin and Pongor, Sandor and Fl\"{o}gel, Mirna}, year = {2003}, pages = {4941-9}, keywords = {site-directed mutagenesis, antibiotic resistance, methylation, protein-RNA interactions}, journal = {Nucleic Acids Research}, volume = {32}, number = {16}, issn = {0305-1048}, title = {Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions}, keyword = {site-directed mutagenesis, antibiotic resistance, methylation, protein-RNA interactions} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Uključenost u ostale bibliografske baze podataka::


  • Index Medicus





Contrast
Increase Font
Decrease Font
Dyslexic Font