Pregled bibliografske jedinice broj: 1283239
Local asymptotic mixed normality of approximate maximum likelihood estimator of drift parameters in diffusion model
Local asymptotic mixed normality of approximate maximum likelihood estimator of drift parameters in diffusion model // 16th German Probability and Statistics Days - GPSD 2023
Essen, Njemačka, 2023. (predavanje, nije recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 1283239 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Local asymptotic mixed normality of approximate
maximum likelihood estimator of drift parameters
in diffusion model
Autori
Lubura Strunjak, Snježana ; Huzak, Miljenko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
16th German Probability and Statistics Days - GPSD 2023
Mjesto i datum
Essen, Njemačka, 07.03.2023. - 10.03.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
asymptotic mixed normality, ergodic diffusion, discrete observation, parameter estimation
Sažetak
Let X be a diffusion which satisfies a stochastic differential equation of the form: dXt=μ(Xt, θ)dt+σ0ν(Xt)dWt, , where drift parameter θ is unknown and diffusion coefficient parameter σ0 is known. We have discrete observations (X_ti, 0≤i≤n) along fixed time interval [0, T]. Let θ¯n be approximate maximum likelihood estimator of drift parameter obtained from discrete observations and let θ^ be maximum likelihood estimator obtained from continuous observations (Xt, 0≤t≤T) along fixed time interval [0, T]. We proved that θ¯n, when Δn=max1≤i≤n(t_i−t_{;i−1};) tends to zero, is locally asymptotic mixed normal, with covariance matrix which depends on MLE θ^ and on path (Xt, 0≤t≤T).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-9559 - Razvoj metoda matematičkog modeliranja u biologiji i medicini (MethMathModBioMed) (Huzak, Miljenko, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb