Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1281685

Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation


Ammar, Doreid; De Moor, Katrien; Skorin-Kapov, Lea; Fiedler, Markus; Heegaard, Poul E.
Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation // Proceedings of the IEEE 44th Conference on Local Computer Networks (LCN)
Osnabrück, Njemačka: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 406-413 doi:10.1109/LCN44214.2019.8990677 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1281685 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation

Autori
Ammar, Doreid ; De Moor, Katrien ; Skorin-Kapov, Lea ; Fiedler, Markus ; Heegaard, Poul E.

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the IEEE 44th Conference on Local Computer Networks (LCN) / - : Institute of Electrical and Electronics Engineers (IEEE), 2019, 406-413

ISBN
978-1-7281-1028-8

Skup
IEEE 44th Conference on Local Computer Networks (LCN)

Mjesto i datum
Osnabrück, Njemačka, 14.10.2019. - 17.10.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Quality of Experience (QoE) ; WebRTC ; machine learning ; video-blockiness ; audio distortion

Sažetak
We address the challenge faced by service providers in monitoring Quality of Experience (QoE) related metrics for WebRTC-based audiovisual communication services. By extracting features from various application-layer performance statistics, we explore the potential of using machine learning (ML) models to estimate perceivable quality impairments and to identify root causes. We argue that such performance-related data can be valuable and informative from a QoE assessment point of view, by allowing to identify the party/parties in a call that is/are experiencing quality impairments, and to trace the origins and causes of the problem. The paper includes case studies of multi-party videoconferencing that are established in a laboratory environment and exposed to various network disturbances and CPU limitations. Our results show that perceivable quality impairments in terms of video blockiness and audio distortions may be estimated with a high level of accuracy, thus proving the potential of exploiting ML models for automated QoE-driven monitoring and estimation of WebRTC performance.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-UIP-2014-09-5605 - Kooperativno upravljanje iskustvenom kvalitetom upokretnim mrežama za interaktivne višemedijske aplikacije u računalom oblaku (Q-MANIC) (Skorin-Kapov, Lea, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Lea Skorin-Kapov (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Ammar, Doreid; De Moor, Katrien; Skorin-Kapov, Lea; Fiedler, Markus; Heegaard, Poul E.
Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation // Proceedings of the IEEE 44th Conference on Local Computer Networks (LCN)
Osnabrück, Njemačka: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 406-413 doi:10.1109/LCN44214.2019.8990677 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Ammar, D., De Moor, K., Skorin-Kapov, L., Fiedler, M. & Heegaard, P. (2019) Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation. U: Proceedings of the IEEE 44th Conference on Local Computer Networks (LCN) doi:10.1109/LCN44214.2019.8990677.
@article{article, author = {Ammar, Doreid and De Moor, Katrien and Skorin-Kapov, Lea and Fiedler, Markus and Heegaard, Poul E.}, year = {2019}, pages = {406-413}, DOI = {10.1109/LCN44214.2019.8990677}, keywords = {Quality of Experience (QoE), WebRTC, machine learning, video-blockiness, audio distortion}, doi = {10.1109/LCN44214.2019.8990677}, isbn = {978-1-7281-1028-8}, title = {Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation}, keyword = {Quality of Experience (QoE), WebRTC, machine learning, video-blockiness, audio distortion}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Osnabr\"{u}ck, Njema\v{c}ka} }
@article{article, author = {Ammar, Doreid and De Moor, Katrien and Skorin-Kapov, Lea and Fiedler, Markus and Heegaard, Poul E.}, year = {2019}, pages = {406-413}, DOI = {10.1109/LCN44214.2019.8990677}, keywords = {Quality of Experience (QoE), WebRTC, machine learning, video-blockiness, audio distortion}, doi = {10.1109/LCN44214.2019.8990677}, isbn = {978-1-7281-1028-8}, title = {Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation}, keyword = {Quality of Experience (QoE), WebRTC, machine learning, video-blockiness, audio distortion}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Osnabr\"{u}ck, Njema\v{c}ka} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font