Pregled bibliografske jedinice broj: 1281685
Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation
Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation // Proceedings of the IEEE 44th Conference on Local Computer Networks (LCN)
Osnabrück, Njemačka: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 406-413 doi:10.1109/LCN44214.2019.8990677 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1281685 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Exploring the Usefulness of Machine Learning in the Context of WebRTC Performance Estimation
Autori
Ammar, Doreid ; De Moor, Katrien ; Skorin-Kapov, Lea ; Fiedler, Markus ; Heegaard, Poul E.
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the IEEE 44th Conference on Local Computer Networks (LCN)
/ - : Institute of Electrical and Electronics Engineers (IEEE), 2019, 406-413
ISBN
978-1-7281-1028-8
Skup
IEEE 44th Conference on Local Computer Networks (LCN)
Mjesto i datum
Osnabrück, Njemačka, 14.10.2019. - 17.10.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Quality of Experience (QoE) ; WebRTC ; machine learning ; video-blockiness ; audio distortion
Sažetak
We address the challenge faced by service providers in monitoring Quality of Experience (QoE) related metrics for WebRTC-based audiovisual communication services. By extracting features from various application-layer performance statistics, we explore the potential of using machine learning (ML) models to estimate perceivable quality impairments and to identify root causes. We argue that such performance-related data can be valuable and informative from a QoE assessment point of view, by allowing to identify the party/parties in a call that is/are experiencing quality impairments, and to trace the origins and causes of the problem. The paper includes case studies of multi-party videoconferencing that are established in a laboratory environment and exposed to various network disturbances and CPU limitations. Our results show that perceivable quality impairments in terms of video blockiness and audio distortions may be estimated with a high level of accuracy, thus proving the potential of exploiting ML models for automated QoE-driven monitoring and estimation of WebRTC performance.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-UIP-2014-09-5605 - Kooperativno upravljanje iskustvenom kvalitetom upokretnim mrežama za interaktivne višemedijske aplikacije u računalom oblaku (Q-MANIC) (Skorin-Kapov, Lea, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Lea Skorin-Kapov
(autor)