Pregled bibliografske jedinice broj: 1281485
Multilingual Named Entity Recognition Solution for Optimizing Parcel Delivery in Online Commerce: Identifying Person and Organization Names
Multilingual Named Entity Recognition Solution for Optimizing Parcel Delivery in Online Commerce: Identifying Person and Organization Names // MIPRO 2023, 46 th ICT and Electronics Convention / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2023. str. 1292-1297 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1281485 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multilingual Named Entity Recognition Solution
for Optimizing Parcel Delivery in Online
Commerce: Identifying Person and Organization
Names
Autori
Pajas, Matija ; Radovan, Aleksander ; Ogrizek Biškupić, Ivana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
MIPRO 2023, 46 th ICT and Electronics Convention
/ Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2023, 1292-1297
Skup
MIPRO 2023, 46 th ICT and Electronics Convention, NATURAL LANGUAGE PROCESSING
Mjesto i datum
Opatija, Hrvatska, 22.05.2023. - 25.05.2023
Vrsta sudjelovanja
Ostalo
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
named entity recognition, parcel delivery, data reliability, person and organization names, multilingual, natural language processing
Sažetak
This paper presents a comprehensive solution to enhance parcel delivery in online commerce by implementing multilingual named entity recognition. The solution is designed to accurately identify person and organization names, with a primary emphasis on correctly identifying recipients. The ultimate goal is to use this information to automatically validate recipients and select the most accurate one to improve data accuracy and reliability for parcel delivery. The process begins by collecting a large dataset of online commerce data, including customer search queries, and annotating it with person and organization names. The data is then preprocessed, cleaned to eliminate irrelevant information, and prepared for training a named entity recognition model. Next, the model is trained and evaluated using this data to ensure its ability to identify named entities and extract recipients from queries accurately. The process employs an iterative training process and data generation techniques, while also addressing the issue of noisy data and iterative training introducing unwanted patterns by retraining the model on the subset of the original annotated dataset. Our experiments conclude a consistent increase of F1 score over the baseline and best iteration using this method of training and fine-tuning.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Visoko učilište Algebra, Zagreb