Pregled bibliografske jedinice broj: 1281404
Predicting Cyberbullying using Machine Learning
Predicting Cyberbullying using Machine Learning, 2023., diplomski rad, preddiplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 1281404 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predicting Cyberbullying using Machine Learning
Autori
Zaninović, Ana
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, preddiplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
26.06
Godina
2023
Stranica
32
Mentor
Bagić Babac, Marina
Ključne riječi
machine learning ; cyberbullying ; sentiment ; classification
Sažetak
This thesis aimed to analyze social media data and recognize whether or not it contains bullying. First, emotion analysis of used datasets was made using NRC Emotion Intensity Lexicon (NRC EIL) for detecting emotion distribution. The used datasets consisted of text samples collected from various social media platforms, and corresponding labels which indicated present of different factors including bullying, aggression, attack, toxicity, and bullying on the basis of age, gender, religion, ethnicity and other factors. Preprocessing techniques like tokenization, stemming, and stop-word removal were applied to clean the text data. Then, machine learning algorithms like Naive Bayes, Multinomial NM, Bernoulli NB, Logistic Regression, SGDC, SVC, Linear SVC and NuSVC were utilized for text classification.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb