Pregled bibliografske jedinice broj: 1281402
Machine Learning Models for Music Genre Classification on AudioSet Dataset
Machine Learning Models for Music Genre Classification on AudioSet Dataset, 2023., diplomski rad, preddiplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 1281402 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine Learning Models for Music Genre
Classification on AudioSet Dataset
Autori
Polanec, Maja
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, preddiplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
26.06
Godina
2023
Stranica
37
Mentor
Bagić Babac, Marina
Ključne riječi
music genre ; audio features ; machine learning ; AudioSet ; logistic regression ; decision tree ; random forest ; support vector machine ; XGBoost ; naïve Bayes
Sažetak
This thesis deals with the problem of classifying music genres using supervised machine learning. Genres classified are pop, rock, hip-hop, vocal, reggae, R&B and techno. AudioSet dataset is used for training and testing models. Audio features from both time and frequency domain are engineered and fed to 6 different models: logistic regression, decision tree, random forests, support vector machine, XGBoost and naïve Bayes. Model performances are evaluated using different evaluation metrics: accuracy, confusion matrix, F1-score and ROC-curve.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Marina Bagić Babac
(mentor)