Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1281402

Machine Learning Models for Music Genre Classification on AudioSet Dataset


Polanec, Maja
Machine Learning Models for Music Genre Classification on AudioSet Dataset, 2023., diplomski rad, preddiplomski, Fakultet elektrotehnike i računarstva, Zagreb


CROSBI ID: 1281402 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine Learning Models for Music Genre Classification on AudioSet Dataset

Autori
Polanec, Maja

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, preddiplomski

Fakultet
Fakultet elektrotehnike i računarstva

Mjesto
Zagreb

Datum
26.06

Godina
2023

Stranica
37

Mentor
Bagić Babac, Marina

Ključne riječi
music genre ; audio features ; machine learning ; AudioSet ; logistic regression ; decision tree ; random forest ; support vector machine ; XGBoost ; naïve Bayes

Sažetak
This thesis deals with the problem of classifying music genres using supervised machine learning. Genres classified are pop, rock, hip-hop, vocal, reggae, R&B and techno. AudioSet dataset is used for training and testing models. Audio features from both time and frequency domain are engineered and fed to 6 different models: logistic regression, decision tree, random forests, support vector machine, XGBoost and naïve Bayes. Model performances are evaluated using different evaluation metrics: accuracy, confusion matrix, F1-score and ROC-curve.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Marina Bagić Babac (mentor)


Citiraj ovu publikaciju:

Polanec, Maja
Machine Learning Models for Music Genre Classification on AudioSet Dataset, 2023., diplomski rad, preddiplomski, Fakultet elektrotehnike i računarstva, Zagreb
Polanec, M. (2023) 'Machine Learning Models for Music Genre Classification on AudioSet Dataset', diplomski rad, preddiplomski, Fakultet elektrotehnike i računarstva, Zagreb.
@phdthesis{phdthesis, author = {Polanec, Maja}, year = {2023}, pages = {37}, keywords = {music genre, audio features, machine learning, AudioSet, logistic regression, decision tree, random forest, support vector machine, XGBoost, na\"{\i}ve Bayes}, title = {Machine Learning Models for Music Genre Classification on AudioSet Dataset}, keyword = {music genre, audio features, machine learning, AudioSet, logistic regression, decision tree, random forest, support vector machine, XGBoost, na\"{\i}ve Bayes}, publisherplace = {Zagreb} }
@phdthesis{phdthesis, author = {Polanec, Maja}, year = {2023}, pages = {37}, keywords = {music genre, audio features, machine learning, AudioSet, logistic regression, decision tree, random forest, support vector machine, XGBoost, na\"{\i}ve Bayes}, title = {Machine Learning Models for Music Genre Classification on AudioSet Dataset}, keyword = {music genre, audio features, machine learning, AudioSet, logistic regression, decision tree, random forest, support vector machine, XGBoost, na\"{\i}ve Bayes}, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font