Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1280870

On Neural Network Application in Solid Mechanics


Sorić, J.; Stanić, M.; Lesičar, T.
On Neural Network Application in Solid Mechanics // Transactions of FAMENA, 47 (2023), 2; 45-66 doi:10.21278/TOF.472053023 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1280870 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On Neural Network Application in Solid Mechanics

Autori
Sorić, J. ; Stanić, M. ; Lesičar, T.

Izvornik
Transactions of FAMENA (1333-1124) 47 (2023), 2; 45-66

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
machine learning, neural networks, feedforward neural network, recurrent neural network, solid mechanics

Sažetak
A review of the machine learning methods employing the neural network algorithm is presented. Most commonly used neural networks, such as the feedforward neural network including deep learning, the convolutional neural network, the recurrent neural network and the physics-informed neural network, are discussed. A special emphasis is placed on their applications in engineering fields, particularly in solid mechanics. Network architectures comprising layers and neurons as well as different learning processes are highlighted. The feedforward neural network and the recurrent neural network are described in more details. To reduce the undesired vanishing gradient effect within the recurrent neural network architecture, the long short-term memory network is presented. Numerical efficiency and accuracy of both the feedforward and the long short-term memory recurrent network are demonstrated by numerical examples, where the neural network solutions are compared to the results obtained using the standard finite element approaches.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Tomislav Lesičar (autor)

Avatar Url Matej Stanić (autor)

Avatar Url Jurica Sorić (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Sorić, J.; Stanić, M.; Lesičar, T.
On Neural Network Application in Solid Mechanics // Transactions of FAMENA, 47 (2023), 2; 45-66 doi:10.21278/TOF.472053023 (međunarodna recenzija, članak, znanstveni)
Sorić, J., Stanić, M. & Lesičar, T. (2023) On Neural Network Application in Solid Mechanics. Transactions of FAMENA, 47 (2), 45-66 doi:10.21278/TOF.472053023.
@article{article, author = {Sori\'{c}, J. and Stani\'{c}, M. and Lesi\v{c}ar, T.}, year = {2023}, pages = {45-66}, DOI = {10.21278/TOF.472053023}, keywords = {machine learning, neural networks, feedforward neural network, recurrent neural network, solid mechanics}, journal = {Transactions of FAMENA}, doi = {10.21278/TOF.472053023}, volume = {47}, number = {2}, issn = {1333-1124}, title = {On Neural Network Application in Solid Mechanics}, keyword = {machine learning, neural networks, feedforward neural network, recurrent neural network, solid mechanics} }
@article{article, author = {Sori\'{c}, J. and Stani\'{c}, M. and Lesi\v{c}ar, T.}, year = {2023}, pages = {45-66}, DOI = {10.21278/TOF.472053023}, keywords = {machine learning, neural networks, feedforward neural network, recurrent neural network, solid mechanics}, journal = {Transactions of FAMENA}, doi = {10.21278/TOF.472053023}, volume = {47}, number = {2}, issn = {1333-1124}, title = {On Neural Network Application in Solid Mechanics}, keyword = {machine learning, neural networks, feedforward neural network, recurrent neural network, solid mechanics} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font