Pregled bibliografske jedinice broj: 1280826
Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater Environment: Is There Real Improvement?
Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater Environment: Is There Real Improvement? // SpliTech2023 - 8th International International Conference on Smart and Sustainable Technologies
Split, 2023. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1280826 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in
Underwater Environment: Is There Real Improvement?
Autori
Gašparović, Boris ; Mauša, Goran ; Rukavina, Josip ; Lerga, Jonatan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Skup
SpliTech2023 - 8th International International Conference on Smart and Sustainable Technologies
Mjesto i datum
Bol, Hrvatska, 20.06.2023. - 23.06.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Artificial Intelligence ; Machine Learning ; Object Detection ; Underwater Images
Sažetak
This paper compares several new implementations of the YOLO (You Only Look Once) object detection algorithms in harsh underwater environments. Using a dataset collected by a remotely operated vehicle (ROV), we evaluated the performance of YOLOv5, YOLOv6, YOLOv7, and YOLOv8 in detecting objects in challenging underwater conditions. We aimed to determine whether newer YOLO versions are superior to older ones and how much, in terms of object detection performance, for our underwater pipeline dataset. According to our findings, YOLOv5 achieved the highest mean Average Precision (mAP) score, followed by YOLOv7 and YOLOv6. When examining the precision-recall curves, YOLOv5 and YOLOv7 displayed the highest precision and recall values, respectively. Our comparison of the obtained results to those of our previous work using YOLOv4 demonstrates that each version of YOLO detectors provides significant improvement.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
VLASTITA-SREDSTVA-uniri-tehnic-17 - Računalom potpomognuta digitalna analiza i klasifikacija signala (UNIRI-TEHNIC-18-17) (Lerga, Jonatan, VLASTITA-SREDSTVA - UNIRI2018) ( CroRIS)
IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka