Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1280826

Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater Environment: Is There Real Improvement?


Gašparović, Boris; Mauša, Goran; Rukavina, Josip; Lerga, Jonatan
Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater Environment: Is There Real Improvement? // SpliTech2023 - 8th International International Conference on Smart and Sustainable Technologies
Split, 2023. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1280826 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater Environment: Is There Real Improvement?

Autori
Gašparović, Boris ; Mauša, Goran ; Rukavina, Josip ; Lerga, Jonatan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Skup
SpliTech2023 - 8th International International Conference on Smart and Sustainable Technologies

Mjesto i datum
Bol, Hrvatska, 20.06.2023. - 23.06.2023

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Artificial Intelligence ; Machine Learning ; Object Detection ; Underwater Images

Sažetak
This paper compares several new implementations of the YOLO (You Only Look Once) object detection algorithms in harsh underwater environments. Using a dataset collected by a remotely operated vehicle (ROV), we evaluated the performance of YOLOv5, YOLOv6, YOLOv7, and YOLOv8 in detecting objects in challenging underwater conditions. We aimed to determine whether newer YOLO versions are superior to older ones and how much, in terms of object detection performance, for our underwater pipeline dataset. According to our findings, YOLOv5 achieved the highest mean Average Precision (mAP) score, followed by YOLOv7 and YOLOv6. When examining the precision-recall curves, YOLOv5 and YOLOv7 displayed the highest precision and recall values, respectively. Our comparison of the obtained results to those of our previous work using YOLOv4 demonstrates that each version of YOLO detectors provides significant improvement.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
VLASTITA-SREDSTVA-uniri-tehnic-17 - Računalom potpomognuta digitalna analiza i klasifikacija signala (UNIRI-TEHNIC-18-17) (Lerga, Jonatan, VLASTITA-SREDSTVA - UNIRI2018) ( CroRIS)
IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Jonatan Lerga (autor)

Avatar Url Goran Mauša (autor)

Avatar Url Boris Gašparović (autor)


Citiraj ovu publikaciju:

Gašparović, Boris; Mauša, Goran; Rukavina, Josip; Lerga, Jonatan
Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater Environment: Is There Real Improvement? // SpliTech2023 - 8th International International Conference on Smart and Sustainable Technologies
Split, 2023. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gašparović, B., Mauša, G., Rukavina, J. & Lerga, J. (2023) Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater Environment: Is There Real Improvement?. U: SpliTech2023 - 8th International International Conference on Smart and Sustainable Technologies.
@article{article, author = {Ga\v{s}parovi\'{c}, Boris and Mau\v{s}a, Goran and Rukavina, Josip and Lerga, Jonatan}, year = {2023}, pages = {1-6}, keywords = {Artificial Intelligence, Machine Learning, Object Detection, Underwater Images}, title = {Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater Environment: Is There Real Improvement?}, keyword = {Artificial Intelligence, Machine Learning, Object Detection, Underwater Images}, publisherplace = {Bol, Hrvatska} }
@article{article, author = {Ga\v{s}parovi\'{c}, Boris and Mau\v{s}a, Goran and Rukavina, Josip and Lerga, Jonatan}, year = {2023}, pages = {1-6}, keywords = {Artificial Intelligence, Machine Learning, Object Detection, Underwater Images}, title = {Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater Environment: Is There Real Improvement?}, keyword = {Artificial Intelligence, Machine Learning, Object Detection, Underwater Images}, publisherplace = {Bol, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font